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Machine Learning Applications for ALS & ALS-U



• ALS has been kept at the forefront of soft x-ray light sources for 3 decades by 
continuous upgrades and R&D effort

• ML presents excellent new opportunity for accelerator R&D to extend ALS leadership

• ALS ML efforts have so far been enabled by a 3-year grant funded jointly by DOE BES
ADRP & ASCR as well as by ALS operations funds

• Initial ALS ML R&D effort: use ML as a powerful "new" tool to solve "old" accelerator 
problems:
• Accelerator operations: automated tuning, replace feedback approaches, virtual 

diagnostics ➔ Project #1
• Accelerator development: improve physics understanding, augment/extend lattice 

optimization, accelerate multi-objective optimization (e.g. MOGA) ➔ Project #2

Intro: Machine Learning (ML) at the ALS
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• State-of-the-art light sources achieve excellent stability in 
terms of beam position/angle & current (orbit feedbacks, 
top-off injection)

• In spite of extensive correction efforts, beam size is still 
perturbed by insertion device (ID) config changes ➔ can 
affect experimental resolution 

• Problem is nonlinear, complex, and non-stationary
• Previous solutions relied on approximations & required 

extensive dedicated machine time for frequent 
recalibration (feed-forward tables)

• Resulting level of performance has started to become a 
limitation at most demanding experiments (STXM, XPCS, 
ptychography, …)

Ø Expected to become a serious issue in next-generation 
light sources (diffraction-limited storage rings, eg. APS-U, 
ALS-U, …)

#1 ML for Acc Ops: Stabilizing Beam Size at ALS
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ALS Diagnostic Beamline 3.1

Vertical beam size @ BL3.1



• Machine Learning can exploit large amounts of data that are already 
collected during routine operations ➔ “training”

• Once trained, neural network (NN) provides
predictions for beam size changes that result from
ID config changes & skew quad corrections (V disp. wave)

• These predictions can serve as a dynamic lookup
➔ which skew quad correction required to compensate
for changes resulting from currently applied ID config?

• If such a lookup is incorporated into the accelerator
control system as a feed forward (FF), we can stabilize the storage ring 
over prolonged periods of time & online retraining can mitigate drift

Developing a Solution Based on Machine Learning
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Fully-connected 5-layer NN (29-128-64-32-1)



Developing a Solution Based on Machine Learning
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Results: NN-based FF Off vs. On During User Ops
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Stabilization Confirmed at STXM @ ALS Beamline 5.3.2.2
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• Split up DNN into 2 models
• Revised primary DNN based

on broad hyper-parameter
optimization

• Revised & accelerated training DAQ: ID 
scanning based on one prior year of user ops

• Online retraining ➔ online fine-tuning
anchored DNN using sliding window buffer ➔
measured performance now at diagnostic BL 
noise floor

• Robustness & integration ➔ new high-level 
interface with event logging & monitoring 

Ø One-click operation provides for becoming 
standard part of everyday user ops

Recently: Improved Model With Online Fine-tuning & Implementation 
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• 4th-generation storage rings (4GSRs) leverage multi-bend 
achromat (MBA) lattices to deliver ultra-high brightness & 
large coherent fraction

• But MBA lattices are very challenging: dense & exploit very 
strong focusing ➔ drives large chromatic terms &
higher-order corrections

• Solutions not only highly nonlinear but involve many
degrees of freedom (DoF) ➔ demanding optimization:
• tough objectives, many often in direct competition
• large number of parameters, many boundary constraints

Ø Multi-objective genetic algorithms (MOGA) are highly 
successful at such optimization & have become tool of 
choice among community

#2 ML for Acc Dev: Improving Multi-Objective Optimization
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• But MOGA’s stochastic nature is inherent weakness ➔ need to 
evaluate vast number of lattice candidates, most ultimately rejected

• Do not want to artificially limit DoF, search ranges, or make many 
initial assumptions about attractive solutions ➔ so what can we 
do?

• ML can be employed to render deep neural networks (DNNs)
➔ surrogate models used in place of computationally expensive 
evaluation (many-turn nonlinear tracking)

Ø Lattice candidate evaluation becomes near instantaneous
• And ideally, we’ll want to target:

• speed up MOGA without modifying MOGA/tracking tools or 
existing workflows & without sacrificing physics fidelity

• direct optimization of relevant physics quantities (ε0, DA, MA)
• combined linear/nonlinear optimization employing all free 

parameters (quadrupoles & sextupoles & …)

Improving MOGA: ML to the Rescue
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• ALS-U storage ring calls for challenging 9BA lattice to 
achieve ≈75 pm rad (round beam) @ 2 GeV in <200 m 
➔ dense, strong focusing, very strained optics

• Initial optimization: 9 quadrupoles, 4 sextupoles ➔ 11 
free knobs (later: include reverse bending & superbends)

• Roughly a dozen magnet/lattice constraints on top 
of pre-determined quadrupole ranges

• Objectives: ε0, MA, and on-momentum DA (modeled 
as integrated diffusion rate)

• Ultimately, a highly staged MOGA approach resulted in
• ±1 mm DA (compatible with on-axis swap-out & AR)

• ≈1 hr overall lifetime (including x4 boost from 3HCs)
• …but required months of CPU time on large clusters

ALS-U Optimization as a Test Case for ML
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ε0 = 108 pm rad
2.5% MA

±1 mm DA



• Training data for 11D problem cannot be acquired 
through systematic sampling of input space

• But do not want to make too many assumptions or “wise 
choices” ➔ retain generality of approach

• Instead: use first few generations of conventional MOGA 
as training data for deep neural networks (DNNs)

• Two 8-layer DNNs used in MOGA instead of calls to 
Tracy for DA and MA (via many-turn tracking)
• Traditional MOGA requires about 640 gen (5000 

children/gen) ➔ ≈8 days on 1000-core cluster
• Training 2 DNNs to get DA/MA predictions ≈1% rms 

requires data from about 10 gen
• Once DNNs trained (≈30 min on desktop CPU) ➔ quasi-

instantaneous lookup (16 ms) vs. DA/MA tracking (88 sec)

ML for Full Linear & Nonlinear ALS-U Optimization
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Fully-connected (FC) NN, using ReLU as activation function, # = node depth
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NIM-A 1050, 168192 (2023)



• ML predictions are not 100% accurate (training based on early data)

• Initial ML-MOGA solutions show disagreement compared to 
tracking validation ➔ but can retrain DNNs with data from 
validation step

• Iterate cycles of validation–retraining–ML-MOGA using model-
independent distance metrics to determine convergence

Ø ML-MOGA very quickly converges (6-8 iterations) toward true Pareto-
optimal front ➔ overall speedup ≈ 40× (incl. training effort)

• Once fully converged, ML-MOGA inputs & objectives match
those of traditional MOGA to within “noise floor”

• Flexible: can be adapted to other lattice optimization problems as 
long as can provide reasonably accurate DNNs

• Potential to fully automate entire optimization campaign & 
optimize in parallel from the start for many error lattices is highly 
attractive ➔ derive truly global optimum

Results: ML-MOGA Successful & 40× Faster
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ML-MOGA fully converged

Traditional MOGA @ gen 643
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• Project success: ML stabilization now always running during
user ops @ ALS & 1x PRL, 1x NIM-A, 1x submitted  PRAB,
2021 Klaus Halbach Prize for Innovative Instrumentation

• ML applied to accelerators shows vast potential to enable
• new more aggressive designs, but also 
• exploit full performance of existing & soon to be

commissioned rings
Ø These are highly relevant issues in both present (ALS) & future 4th-generation 

storage rings (ALS-U)
Ø We have plenty of ideas for future ML applications (White Paper submitted to E. Lessner)

• ATAP & LBL continue to foster great collaboration on ML for accelerators
Ø https://atap.lbl.gov/research/crosscutting-endeavors/artificial-intelligence-and-machine-learning/
Ø https://ml4sci.lbl.gov/projects

Success, Outlook & Opportunities for Collaboration
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Thank You

Questions?
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