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Introduction
A key component of the future vision for the 

Advanced Light Source (ALS) at Lawrence 
Berkeley National Laboratory is acceleration of 
scientific knowledge creation using synchro-
tron light through intuitive and transformative 
computational solutions. We believe that lever-
aging AI will be critical to achieving this vision, 
so to formulate our plans in this area, a focused 
AI@ALS workshop was held for ALS staff on 
February 28–29, 2024. The workshop started 
with a plenary with an introduction and flash 
talks on some of the work that has been done on 
AI at the ALS, then moved into two sets of 
breakouts: the first day of breakouts was based 
on synchrotron and scientific domains (e.g., ac-
celerator, user office, controls, imaging, scatter-
ing, spectroscopy, and biology), while the sec-
ond day was based on AI/ML domains (e.g., 
large language models, dimensionality reduc-
tion, autonomous, generative and digital twins, 
and AI-ready controls and data). The full charge 
to the workshop participants was as follows:

This workshop aims to survey the current use 
of machine learning (ML) at the Advanced Light 
Source (ALS), identify the main challenges faced 
by scientists in applying ML to accelerator work, 
data analysis, and autonomous data collection at 
beamlines and discuss potential future directions 

for ML support in these areas. It seeks to foster an 
exchange on the realities and possibilities of ML 
integration in scientific research workflow at ALS.

•	 Current Applications Insight: Obtain a 
clear picture of how ML is being utilized 
within the ALS community, highlighting 
existing practices, successes, and areas 
for improvement.

•	 Challenges Identification: Identify com-
mon challenges and bottlenecks in lever-
aging ML for enhancing data analysis and 
autonomous operations at beamlines.

•	 Future Possibilities: Outline realistic and 
aspirational goals for the advancement of 
ML support at beamlines, focusing on 
practical steps to achieve these objectives.

•	 Strategic Recommendations: Formulate 
practical recommendations for addressing 
current challenges and facilitating the 
adoption of ML technologies at beamline.

This report summarizes the outcomes of 
the workshop, and is divided into the follow-
ing sections:

•	 FAIR Data for Synchrotrons
•	 Current and Future AI@ALS

	○ AI@Accelerator
	○ AI@Beamlines

	○ AI@User Office
•	 Showcases of past AI/ML work at the ALS
•	 Conclusion/Executive Summary

FAIR data for synchrotrons
FAIR stands for Findability, Accessibil-

ity, Interoperability, and Reusability. Dur-
ing the workshop, the principles of FAIR 
data emerged as an important cornerstone 
of any AI and ML efforts [1]. By adopting 
these principles, the ALS can vastly im-
prove the quality and usability of its datas-
ets, fostering a collaborative environment 
that benefits every researcher. This section 
reviews the transformative benefits of the 
FAIR approach to data, the steps required to 
implement this approach, and how it can be 
integrated into the fabric of ALS operations.

Benefits of FAIR data
There are a number of benefits of FAIR 

data, including the following.

•	 Enhanced Data Quality:
	○ FAIR data principles ensure that da-
tasets are thoroughly documented 
and standardized. This meticulous 
approach reduces errors and biases, 
providing a solid foundation for 
training robust AI/ML models.
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•	 Improved Accessibility:
	○ With data being easily findable and 
accessible, researchers can swiftly lo-
cate the datasets they need. This ease 
of access accelerates the research 
process and encourages collabora-
tion, as data can be shared and reused 
across different studies and disci-
plines.

•	 Interoperability:
	○ Standardized data formats and proto-
cols allow integration of datasets 
from various sources. This is crucial 
for multi-modal data analysis, where 
combining different data types can 
lead to new insights and discoveries.

•	 Reusability:
	○ When well-documented and pre-
served with comprehensive meta-
data, data becomes a valuable re-
source that can be reused for future 
research. This reusability ensures that 
datasets contribute to scientific prog-
ress long after creation.

What’s needed to make data FAIR
Implementing FAIR data principles re-

quires a concerted effort and several key com-
ponents [2]:

•	 (Meta)data Standards:
	○ Establishing robust metadata stan-
dards is vital. Metadata should pro-
vide detailed descriptions of the data-
set, its origin, and the processing 
steps it has undergone, ensuring that 
anyone can understand and use the 
data correctly. The ALS works 
closely with other lightsources to es-
tablish and adopt standards. Many 
techniques used at the ALS do not 
have established standards and will 
require internal development. The 
ALS will curate, version, and publish 
the standards that it uses. (F, I, R)

•	 Data Repositories:
	○ Centralized data repositories are es-
sential. These repositories should be 
easily accessible, support standard-
ized data formats, and provide robust 
data discovery and retrieval tools. 
The ALS is using SciCAT to accom-

plish this. Additionally, repositories 
will create globally unique identifiers 
for datasets, a key provision of FAIR 
principles. Integration with DOI 
minting services will enable swift ex-
posure of published data sets. (F, A)

•	 Data Governance Policies:
	○ Clear data governance policies are 
needed to outline data ownership, ac-
cess rights, and usage guidelines. 
These policies ensure that data is 
managed responsibly and ethically. 
Some bottom-up effort to define this 
is useful, but it ultimately needs to be 
agreed upon by all stakeholders and 
the DOE.

•	 Technological Infrastructure:
	○ Investing in the necessary technolog-
ical infrastructure, such as high-per-
formance computing resources and 
advanced data management systems, 
supports the efficient storage, pro-
cessing, and analysis of large datas-
ets. Infrastructure to curate and pub-
lish data standards and validate 
(meta)data will enable the future of 
FAIR data at the ALS.

Bringing FAIR data to life at ALS
Turning the vision of FAIR data into reality 

at ALS involves practical steps and strategic 
initiatives:

•	 Developing Guidelines:
	○ Creating comprehensive guidelines 
that outline the steps to make data 
FAIR is essential. These guidelines 
should include templates and best 
practices for metadata documenta-
tion, data formatting, and repository 
submission. These guidelines must 
be developed collaboratively.

•	 Centralized Repositories:
	○ The current ALS centralized reposi-
tory (based on an implementation of 
SciCAT) needs to be extended to 
many more beamlines to foster a com-
prehensive centralized repository.

•	 Automating Data Collection:
	○ Implementing automated systems for 
data collection that include metadata 
generation ensures that datasets are 

consistently and accurately docu-
mented from the outset.

•	 Fostering a Culture of Sharing:
	○ Encouraging a culture of data sharing 
among researchers is essential. High-
lighting the benefits of data reuse and 
collaboration and recognizing contri-
butions to data repositories through 
incentives can promote this culture.

•	 Collaborating Externally:
	○ Partnering with other research insti-
tutions and data standards organiza-
tions can help align ALS data prac-
tices with global FAIR data standards. 
Such collaboration enhances interop-
erability and facilitates broader data 
sharing and reuse.

•	 Improve Training Tools
	○ To make the best use of available 
resources and effectively analyze 
and visualize their data using ad-
vanced computational resources, 
such as HPC, ALS users will require 
comprehensive training to. This im-
proved training will enable users to 
fully leverage HPC capabilities, al-
lowing them to continue their data 
analysis and visualization indepen-
dently even after their experiments 
are completed.

Adopting FAIR data principles at ALS is 
not just about improving data management; 
it’s about unlocking the full potential of AI 
and ML in scientific research. By ensuring 
that data is findable, accessible, interopera-
ble, and reusable, ALS can provide better 
training datasets, leading to more accurate 
and reliable AI/ML models. Implementing 
these principles requires a strategic approach 
involving robust metadata standards, cen-
tralized repositories, clear governance poli-
cies, and continuous education and training. 
ALS can accelerate scientific discovery and 
innovation through these efforts, benefiting 
the entire research community.

Current and future AI@ALS
AI@accelerator

Modern particle accelerators, such as 3rd- 
and 4th-generation synchrotrons, are large and 
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incredibly complex instruments that require 
tight control and optimization to render de-
sired performance. State-of-the-art codes and 
parallel supercomputing is employed during 
the design phase to optimize the particle ac-
celerator parameters and also to investigate 
the effect of imperfections in the as-built in-
struments along with possible mitigation strat-
egies. Later, once commissioned, these ma-
chines require further optimization to exploit 
their full potential as well as various monitor-
ing, data acquisition, and complex manipula-
tion tools to ensure high operational reliability 
as well as quick recovery from both planned 
and unplanned outages.

It is not uncommon to find a modern parti-
cle accelerator with 100,000 process variables 
(PVs, which include measured values of sen-
sors, motor positions, vacuum levels, or power 
supply settings), many of which update at high 
data rates often well in excess of what a human 
can process or react to. AI and ML are ideal 
tools to support accelerator physicists and engi-
neers in all of these aforementioned tasks since 
they offer the potential to abstract from multi-
dimensional parameter hyperspaces or imple-
mentation complexity and instead allow for the 
focus to remain on the physics involved in solv-
ing an issue or improving the performance. At 
the ALS we have pioneered AI/ML applied to 
synchrotrons: we have demonstrated the AI/ML 
approach both for the operational accelerator as 
well as in the design of future accelerators—see 
the showcases section below for more details 
on this work.

Autonomous accelerator operation
The pursuit of autonomous accelerator op-

eration leverages AI and ML to create self-opti-
mizing systems capable of adjusting opera-
tional parameters in real-time [3]. This 
autonomy aims to maximize accelerator perfor-
mance, energy efficiency, and beam stability 
without continuous human intervention. Such 
advancements could significantly reduce down-
time and enhance the consistency of beam qual-
ity, thereby supporting a wide range of scien-
tific experiments with varying requirements.

LLM-powered control room assistant
Language Model (LLM) powered assistants 

in the control room represent a significant leap 

towards enhancing operational efficiency and 
decision-making [4]. These AI-driven tools can 
provide operators with instant access to a vast 
repository of documentation, operational logs, 
and diagnostic information, facilitating quicker 
resolution of issues and optimizing operational 
strategies. This intelligent assistant can trans-
form the control room into a more responsive 
and informed environment. This development 
is particularly critical due to the enormous vol-
ume of information that is challenging to navi-
gate using traditional search methodologies. By 
streamlining access to this wealth of data, 
LLM-powered assistants ensure that operators 
can swiftly locate and utilize the specific infor-
mation needed, significantly accelerating oper-
ational workflows and decision-making pro-
cesses.

Auto-tuning with reinforcement learning
Reinforcement learning [5] offers a prom-

ising avenue for auto-tuning accelerator pa-
rameters to achieve desired outcomes. This 
technique involves training models to make 
decisions that maximize some notion of cumu-
lative reward. In the context of accelerators, it 
could automate the complex process of beam 
tuning, achieving optimal performance faster 
and more reliably than traditional manual tun-
ing methods. This approach is expected to be 
particularly beneficial for the operation of 
ALS-U, given its significantly increased com-
plexity. The application of reinforcement 
learning to ALS-U introduces a scalable 
method that is well-suited to navigating the 
enhanced intricacies of machine start up, beam 
tuning and operational optimization.

Advanced feed forward correction algorithms
The implementation of advanced feed-for-

ward correction algorithms stands to signifi-
cantly improve beam stability and quality. By 
anticipating and compensating for distur-
bances before they affect the beam, these algo-
rithms ensure a higher level of precision in 
beam delivery, crucial for experiments that 
demand the utmost accuracy and stability.

Anomaly detection and predictive 
maintenance

AI-driven anomaly detection [6] and pre-
dictive maintenance frameworks are set to 

dramatically reduce downtime and mainte-
nance costs. By identifying patterns indica-
tive of potential failures [7], these systems 
can alert operators to issues before they esca-
late into critical failures. This approach not 
only ensures the longevity of the accelera-
tor’s components but also enhances safety 
and reliability.

Comprehensive databases of operational 
records

A pivotal aspect of these frameworks is 
their ability to sift through vast volumes of 
historical operational data. This deep analysis 
enables the identification of equipment fail-
ures and any deviations from normal opera-
tions, offering a comprehensive view of the 
accelerator’s performance over time. By lever-
aging archived data, AI algorithms can detect 
subtle anomalies that might precede equip-
ment failures, ensuring that preventative mea-
sures can be implemented in a timely manner. 
This is supported by our ongoing effort to 
streamline our control subsystems to ensure 
they are fully synchronized and systematically 
archived in the new archiver appliance.

Machine learning for monitoring insertion 
device (ID) health

ML algorithms are poised to revolutionize 
the monitoring of ID health through the analy-
sis of data points such as motor forces, vibra-
tions, and tracking errors. These metrics act as 
early indicators for identifying wear and tear 
in essential components. By foreseeing main-
tenance requirements before breakdowns oc-
cur, ML is set to prolong the service life of 
valuable machinery, reduce unexpected opera-
tional pauses, and refine maintenance plan-
ning.

Virtual diagnostics and digital twins for 
accelerators

The establishment of a digital twin [8–10], 
specifically for the injector complex, marks 
an important target for advancing diagnostic 
capabilities and optimization efforts. This vir-
tual model, continuously updated with real-
time operational data, can simulate and pre-
dict the behavior of the physical system under 
various conditions. Such a tool allows for 
risk-free experimentation on operational im-
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provements and troubleshooting without im-
pacting the facility’s productivity. This is es-
pecially crucial because the key diagnostic 
instruments within the injector system are 
destructive and cannot be utilized during stan-
dard operational periods.

AI@beamlines
AI can affect every aspect of user and staff 

experience at beamlines—before, during, and 
after experiments. AI is applied to experiment 
planning, beamline setup, and alignment; to 
automate, accelerate, and improve data collec-
tion; and to analyze and extract information 
from data. In many cases, AI does not just ac-
celerate experiments, it completely changes 
how experiments are done. To give one scien-
tific example of why this is the case, consider 
the many-body degrees of freedom in real ma-
terials, which can result in multiple overlap-
ping features in the spectroscopic data [11]. 
There is currently no general physics-based a 
priori interpretation of complex spectral fea-
tures that could be used to automate data re-
duction, but ML-based approaches can help 
make progress in this area.

Proposal phase, experiment planning
While users prepare proposals, AI/ML al-

gorithms and tools can streamline processes, 
offering enhancements and recommendations 
to ensure that proposers are equipped with the 
insights needed to refine their experimental 
designs and hypotheses. For example, sophis-
ticated chatbots fine-tuned with information 
from previous open-access publications and 
technical beamline documentation, could offer 
invaluable assistance in experimental plan-
ning. These AI assistants can provide immedi-
ate, tailored advice on a range of topics—from 
selecting the most suitable beamline for a par-
ticular experiment to optimizing experimental 
parameters.

ML-augmented analysis that leverages ex-
isting data from previous experiments could 
offer proposers preliminary insights, suggest-
ing potential outcomes and helping in refining 
hypotheses and experimental approaches. By 
analyzing data from similar studies, ML algo-
rithms can pre-emptively identify then suggest 
the most relevant previous data and processing 
pipelines for a given proposal, enabling the 

development of bespoke analysis pipelines. 
This process ensures that by the time research-
ers arrive at the ALS, they are already equipped 
with ML models and analysis strategies finely 
tuned to their specific needs.

These tools could be pushed a step further, 
where users can use “digital twins”, virtual 
surrogates of experimental setups, to conduct 
virtual preliminary experiments, exploring a 
wide range of scenarios and parameters before 
physically conducting their studies. This not 
only optimizes the use of beamline time but 
also significantly enhances the likelihood of 
experimental success.

Beamline alignment and experiment setup
This section explores how AI and ML tech-

nologies can be harnessed to streamline and 
accelerate beamline alignment and experiment 
setup, transforming these preliminary stages 
into more efficient and less labor-intensive 
tasks.

The concept of a digital twin [8–10] is par-
ticularly potent for beamline alignment and 
setup. By creating digital twins of every beam-
line, stage, and motor, AI algorithms can simu-
late and predict the optimal configurations for 
experiments. This virtual representation al-
lows for extensive pre-experimentation plan-
ning and troubleshooting, significantly reduc-
ing the time required for physical adjustments.

The utilization of neural networks enables 
the precise prediction of beam position, size, 
and intensity, facilitating the fine-tuning of 
beamline configurations. These AI models can 
learn from historical data to predict the out-
comes of different settings, guiding techni-
cians and researchers in making informed ad-
justments that optimize the experimental 
setup.

AI-powered systems can also address me-
chanical imperfections, such as backlash and 
non-linearity, through automated calibration 
processes. Advanced Intelligent Systems 
(AIS) can be employed to dynamically adjust 
and calibrate beamline components, ensuring 
high precision and reliability without the need 
for constant human intervention.

The concept involves collecting and utiliz-
ing training data during non-user hours to re-
fine AI models dedicated to beamline align-

ment. This approach leverages the downtime 
of facilities to enhance the capabilities of AI 
systems, ensuring that they are continually 
learning and improving. By performing fully 
autonomous beamline alignment, the initial 
coarse adjustments can be managed through 
ML techniques, such as Bayesian optimiza-
tion. Following this, a hybrid approach that 
includes analytical refinement can fully opti-
mize the beamline settings. A critical aspect of 
this process is the integration of digital twins 
with full physics modeling. This combination 
not only accelerates the learning process for 
deep learning approaches but also ensures that 
the AI's predictions and adjustments are 
grounded in the physical realities of the beam-
line operations. The ability of AI and ML to 
simulate and predict the complex interplay of 
factors affecting beamline performance repre-
sents a significant advancement in experimen-
tal setup processes [12].

During beamtime
During beamtime, AI and ML can enhance 

the efficiency, accuracy, and outcomes of sci-
entific experiments through data preparation, 
autonomous operations, real-time analysis, 
and the implementation of digital twins.

At the core of AI-ready beamline controls 
is a robust data management infrastructure de-
signed to handle the vast volumes of data gen-
erated during experiments, as demonstrated in 
Figure 1. This infrastructure encompasses data 
storage, formats, retrieval, and throughput—
critical enabling technologies that support a 
wide range of AI@ALS capabilities. Central-
ized database management and automated 
data movement, coupled with strict adherence 
to data security and privacy policies, form the 
backbone of this system, ensuring that data is 
not only accessible but also protected.

The foundation of effective AI/ML applica-
tion in beamline experiments is the preparation 
of "ML-ready" data. By ensuring compatibility 
among various systems and facilitating higher 
data throughput, this infrastructure paves the 
way for advanced data analysis and ML appli-
cations. Techniques to render scientific data di-
gestible for ML algorithms are crucial. Equally 
important is the robust collecting and version 
control of analysis and ML solutions, linked 
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seamlessly to the data as metadata. These steps 
ensure data integrity, reusability, and compati-
bility with advanced ML algorithms.

In addition to the traditional experimental 
data, data must be collected from beamline con-
trol logs and the other extensive parameters re-
lated to the experimental setups, including en-
vironmental conditions such as temperature, 
vibration, and slope, and sample information, 
as well as proposal information, to ensure com-
prehensive data documentation. This detailed 
capture of data enables the daily optimization 
and alignment of experimental systems, with 
recommendations driven by AI-powered analy-
sis. By learning from user activities and needs, 
these AI-enhanced systems can significantly 
improve experimental outcomes and efficiency.

Autonomous beamline operations
Autonomous beamline operations, enabled 

by AI and ML, encompass a wide array of ac-
tivities from phase space exploration and sam-
ple development to parameter optimization 
and adaptive controls [13, 14]. These advance-
ments are driving a new era of experimental 
efficiency and precision at the Advanced Light 
Source (ALS).

Key to this autonomy is anomaly detection 
and phase space exploration. AI technologies 
also enable sophisticated anomaly detection by 
mining control log data and incorporating inputs 
from a variety of sensors for multi-modal analy-

sis. This approach allows for the continuous 
monitoring of instrument health, anticipating po-
tential failures before they occur. By identifying 
non-random patterns in the data, AI algorithms 
can notify relevant personnel of emerging issues, 
facilitating timely interventions.

Digital twins play a crucial role in closing-
the-loop type experiments. By creating virtual 
surrogates of physical systems, digital twins 
can simulate and predict optimal configura-
tions for experiments. This virtual representa-
tion allows for extensive pre-experiment plan-
ning and troubleshooting, significantly 
reducing the time required for physical adjust-
ments and ensuring high precision and reli-
ability in experimental setups.

Autonomous beamline operations are also 
advancing through adaptive scanning tech-
niques. These techniques, supported by scal-
able and reusable elements, including com-
mon APIs and robust communication 
networks, exemplify the integration of AI in 
beamline control. Fast, high-performance con-
trols capable of generating actionable infor-
mation in real-time are crucial for the specific 
computational needs of each experiment.

AI-enhanced beamline controls incorpo-
rate the concept of the “human in the loop” 
[15, 16], allowing users to guide and influence 
automated behaviors. This approach fosters a 
collaborative interaction between researchers 
and AI systems, enhancing the user experience 

and experiment efficacy. Examples such as the 
Self-Driving Scanning Transmission X-ray 
Microscope (STXM) and the ARPES AARD-
VARK highlight how AI and ML are being 
deployed to increase scanning speeds and im-
prove data acquisition and analysis in prepara-
tion for next-generation light sources like 
ALS-U. An example for IR and ARPES is pre-
sented in the AI@ALS Showcase section be-
low.

Viewed holistically, an ALS experiment 
can be integrated into the search for new mate-
rials through the selection of compositional 
and structural properties, which is a proposed 
activity at Charter Hill (see https://research.
lbl.gov/2021/03/11/lab-workshops-and-
events-provide-input-for-charter-hi l l -
materials-and-chemistry-campus-vision/). In 
some cases, ALS experiments already include 
synthesis and ancillary characterization capa-
bilities, allowing for “complete” closed-loop 
experiments. In other instances, synthesis is 
conducted beforehand off-site, requiring judg-
ment on which samples to prepare. This ex-
perimental need can be addressed by genera-
tive algorithms both before and during the 
experiments.

Data analysis during beamtime
ML-augmented analysis techniques, such 

as phasing, crystal structure determination, 
and image processing, are set to advance the 

Figure 1:  This figure shows the interconnected infrastructure necessary to provide ML-as-a-service to an AI-ready beamline. This encompasses data stor-
age, formats, retrieval, and throughput.

https://research.lbl.gov/2021/03/11/lab-workshops-and-events-provide-input-for-charter-hill-materials-and-chemistry-campus-vision/
https://research.lbl.gov/2021/03/11/lab-workshops-and-events-provide-input-for-charter-hill-materials-and-chemistry-campus-vision/
https://research.lbl.gov/2021/03/11/lab-workshops-and-events-provide-input-for-charter-hill-materials-and-chemistry-campus-vision/
https://research.lbl.gov/2021/03/11/lab-workshops-and-events-provide-input-for-charter-hill-materials-and-chemistry-campus-vision/
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capabilities of beamline experiments signifi-
cantly. ML-based tomographic and ptycho-
graphic reconstruction, image segmentation, 
peak and shape detection, and spectral finger-
printing are examples of how ML can trans-
form data analysis, enabling deeper insights 
and discoveries. Dimensionality reduction 
techniques, such as PCA and NMF, further en-
hance the ability to distill and interpret com-
plex datasets.

Often experiments are conducted at mul-
tiple conditions, where the goal is to optimize 
experimental information, optimize sample 
quality, or locate novel spectral features. 
These degrees of freedom include tempera-
ture, beamline settings, in operando parame-
ters like applied voltage to control charge 
density or to scan along I-V trajectories. In 
other experiments the goal might be to sur-
vey these parameters to determine overall 
phase diagrams, e.g., in “library” samples 
with 2D compositional gradient structures. 
When scanning these libraries, there are large 
swaths of the search phase space where noth-
ing happens, separated by interfaces where 
the phase and spectral information is most 
interesting, and time should be focussed on 
the latter, not wasted on the former. The ex-
treme case of this is the “needle in a hay-
stack” problem [17], where the interesting 
results occur for highly localized sets of con-
ditions. Researchers are searching immense 
volumes of this high dimensional DOF at the 
Advanced Light Source. The wealth of infor-
mation must be distilled to its essential ele-
ments without losing critical insights. Di-
mensionality reduction while focusing on the 
commonality and differences in the data set 
of techniques designed to simplify complex 
datasets, making them more manageable and 
interpretable [18, 19].

Principal Component Analysis (PCA) [20–
22] helps identify the aspects of the data that 
matter most, those that carry the most signifi-
cant patterns and trends in the data. PCA trans-
forms the data into a set of orthogonal compo-
nents, ranking them by the variance they 
explain. This method has become a staple in 
the ALS toolkit, especially useful in reducing 
the complexity of large datasets while retain-
ing the core information.

Non-Negative Matrix Factorization (NMF) 
[23–25] offers a different approach. It decom-
poses the data into two smaller matrices with 
only non-negative elements, much like taking 
a colorful image and breaking it down into ba-
sic colors and their intensities. NMF shines in 
applications where the data naturally exhibit 
non-negativity, such as spectral imaging. By 
focusing on these fundamental components, 
researchers can isolate and study individual 
chemical compounds within complex mix-
tures.

Another powerful tool in the dimensional-
ity reduction arsenal is Uniform Manifold Ap-
proximation and Projection (UMAP) [26]. 
UMAP excels at preserving the global struc-
ture of high-dimensional data while providing 
a clear, low-dimensional representation. It is 
particularly effective for visualizing complex 
relationships and identifying clusters within 
the data.

After UMAP has reduced the dimensional-
ity of the data, clustering algorithms such as 
k-means [27, 28] or hierarchical clustering 
[29, 30] can be applied to identify distinct 
groups within the data. This approach is akin 
to mapping out different neighborhoods in a 
city after reducing the city’s complexity into a 
manageable map. This technique is invaluable 
at ALS for categorizing various data for mate-
rials, biological samples, or experimental con-
ditions based on their underlying characteris-
tics.

Autoencoders [31–34] are a sophisticated 
type of neural network designed for efficient 
data representation. Think of them as skilled 
artisans who compress data into a simpler 
form without losing its essence and then re-
construct it almost perfectly. At ALS, autoen-
coders are pivotal in tasks such as denoising 
images and reconstructing high-quality tomo-
graphic images (Figure 2).

Dimensionality reduction can effectively 
reduce noise by focusing on the most critical 
components and filtering out irrelevant infor-
mation, clarifying the data and making it more 
reliable. Computational efficiency is also im-
proved, as reduced-dimensional data requires 
less processing power and time—a crucial fac-
tor in large-scale experiments. Moreover, ma-
chine learning models often perform better 

when trained on reduced-dimensional data, as 
this helps mitigate overfitting and enhances 
the models’ ability to generalize to new data 
[35, 36].

Dimensionality reduction is more than just 
a data processing tool at ALS; it is a transfor-
mative approach that empowers researchers to 
unlock deeper insights and achieve more pre-
cise results. By simplifying the vast and com-
plex data they work with, these techniques not 
only make the data more manageable but also 
significantly enhance the overall research pro-
cess. As ALS continues to push the boundaries 
of scientific discovery, dimensionality reduc-
tion will remain a vital part of their analytical 
arsenal.

Post beamtime data analysis
While enhancing on-the-fly data analysis 

capabilities at the ALS remains a priority, it is 
equally important for users to have the ability 
to analyze and review results post-beamtime. 
This allows them to identify interesting out-
comes or correlations from the entire collected 
dataset. To facilitate this analysis, datasets 
should be readily accessible and cataloged 
with corresponding experimental metadata. 
For example, integrating data repositories 
with searchable metadata tags can help users 
quickly locate specific datasets. Additionally, 
ML tools, such as dimension reduction com-
bined with clustering algorithms to group 
similar results, should be capable of summa-
rizing these findings and enabling users to ex-
plore the data efficiently.

Additionally, there is an opportunity to 
contribute training data to open-source com-
munity-wide datasets for the development of 
breakthrough tools, such as AlphaFold [37]. 
By providing diverse and high-quality datas-
ets, scientists at the ALS can further improve 
pre-trained ML models for a variety of analy-
sis pipelines. This collaborative approach ac-
celerates innovation, as it allows for the vali-
dation and improvement of algorithms across 
techniques and user facilities. Moreover, 
open-access data repositories promote trans-
parency and reproducibility in research, fos-
tering a more robust scientific community.

ML techniques provide the ability to un-
cover valuable insights within complex data 
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sets, such as those collected at the ALS. In the 
context of multi-modal experimentation, in-
corporating both in-situ and ex-situ character-
ization, ML-based analysis can help users pro-
cess data from partial experiments and use 
these insights to guide future experimental 
designs. For instance, the analyzed results of 
partial multi-modal experiments can serve as 
valuable prior knowledge for planning and ex-
ecuting future ex-situ characterization (and 
vice versa). By integrating this prior knowl-
edge into data-driven learning systems, such 
as reinforcement learning models [38, 39] or 
hybrid analytics frameworks, we can enhance 
the performance and execution of subsequent 
experiments. This approach informs decision-
making and helps determine the optimal direc-
tion for future investigations.

Similarly, users can leverage past correla-
tions with synchrotron data to “upscale” non-
synchrotron data. An example of this is utiliz-
ing machine learning models trained on both 
lab-based microCT data and synchrotron 
scans to enhance the resolution of lab-based 
microCT images. The use of super-resolution 
ML-based enhancement methods, such as Su-

per-Resolution Convolutional Neural Net-
works (SRCNN) [40] or Generative Adver-
sarial Networks (GANs) [41], can further 
improve the correlation between synchrotron 
and non-synchrotron datasets, providing more 
detailed and accurate representations.

Publications
ML techniques enable the use of historical 

experimental data collected at the ALS, com-
bined with published findings, to inform pre-
trained models and analysis pipelines. By le-
veraging this wealth of past high-quality data, 
ML algorithms can identify patterns and in-
sights that would be difficult to discern manu-
ally. This approach allows for the develop-
ment of sophisticated, custom analysis 
pipelines tailored to specific experimental 
needs.

Additionally, these tailored pipelines can 
be made readily accessible to researchers prior 
to their beamtime. This preparation maximizes 
the efficiency and productivity of the beam-
time, allowing researchers to derive more 
meaningful and actionable insights from their 
experimental data. By integrating historical 

data and cutting-edge ML techniques, this ap-
proach not only enhances the immediate re-
search outcomes but also contributes to the 
continuous improvement and evolution of ex-
perimental methodologies at the ALS.

ML-based algorithms can integrate data 
from various sources to create comprehensive 
datasets for bibliometric analysis, which pro-
vides detailed information about users and 
their research groups. By analyzing co-author-
ship patterns in ALS-related publications, AI 
can map collaboration networks within the 
ALS user community. This information is 
valuable for targeted collaboration and out-
reach efforts, fostering stronger connections 
and more effective scientific partnerships.

AI@ the user office
The ALS User Office faces multifaceted 

challenges, from streamlining the affiliate pro-
cessing and proposal review workflows to op-
timizing beamtime allocation and addressing 
language barriers. Similarly, the Communica-
tions team endeavors to identify high-impact 
publications, generate compelling content, 
and tailor communications to diverse audience 

Figure 2:  Web-based interface for dimensionality reduction and visualization. This application makes use of autoencoders, dimension reduction tech-
niques, and clustering algorithms for analysis.
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segments. In parallel, the complex domain of 
bibliometrics demands sophisticated tools for 
literature searches, citation analysis, and trend 
forecasting to gauge the impact of ALS-facili-
tated research on the broader scientific com-
munity.

AI and ML in ALS user office
Within the User Office at the Advanced 

Light Source (ALS), a series of innovative AI 
and ML applications are poised to transform 
the user experience and operational efficiency. 
One such application is the deployment of au-
tomated user support systems, such as chat-
bots and virtual assistants. These tools stand 
ready to deliver immediate and round-the-
clock responses to common inquiries, signifi-
cantly enhancing user interaction and satisfac-
tion. This real-time assistance can streamline 
the resolution of queries related to the pro-
posal process, training, safety requirements, 
and site access, thereby elevating the overall 
user experience [42].

In parallel, the utilization of Machine 
Learning (ML) in the initial screening of 
beamtime applications could represents a leap 
towards operational efficiency. By automating 
the review process based on predefined crite-
ria, ML could swiftly identify applications that 
meet the ALS's stringent requirements, thereby 
streamlining the selection process and ensur-
ing that beamtime is allocated to the most 
promising and impactful research projects.

Predictive analytics [43] further augments 
the User Office’s capabilities by employing 
sophisticated models to forecast beamtime de-
mand and identify emerging user trends. This 
forward-looking approach enables more effec-
tive planning and resource allocation, ensur-
ing that the ALS can accommodate the evolv-
ing needs of its user community.

Scheduling optimization, another critical 
area of application, harnesses ML to consider 
a multitude of factors, including experiment 
complexity and user availability. This optimi-
zation ensures that beamtime is allocated in a 
manner that maximizes facility utilization 
while accommodating the diverse needs of re-
searchers.

Sentiment analysis [44] of user satisfaction 
surveys offers insights into the user experi-

ence. By applying ML to analyze feedback, 
the ALS can proactively address concerns, re-
fine services, and highlight areas of success, 
fostering a culture of continuous improvement 
and user-centric service.

Lastly, AI could play a role in enhancing 
the match between users and beamlines, as 
well as between proposals and reviewers. By 
analyzing the research needs and expertise 
available within its community, AI can ensure 
that users are directed to the beamlines that 
best match their experimental requirements. 
Simultaneously, proposals are assigned to re-
viewers whose expertise aligns with the re-
search being proposed, ensuring a fair and in-
formed review process [45].

These AI and ML applications collectively 
signify a paradigm shift in how the ALS User 
Office operates, promising a more responsive, 
efficient, and user-focused service model. 
Through these innovations, the ALS is set to 
redefine the standards of user support and op-
erational excellence in the scientific research 
community.

AI and ML in ALS communications
The Communications team at the Ad-

vanced Light Source (ALS) is at the forefront 
of integrating Artificial Intelligence (AI) and 
Machine Learning (ML) to revolutionize how 
the facility engages with its diverse user base 
and the broader scientific community. These 
technologies can help in crafting targeted 
communications and segmenting audiences 
with unparalleled precision. By analyzing user 
engagement and preferences, AI can enable 
the Communications team to tailor messages 
and content that resonate with each segment of 
the ALS community, ensuring that informa-
tion is relevant, engaging, and timely.

Website personalization can be facilitated 
by AI-driven tools capable of dynamically ad-
justing content in real-time based on user be-
havior and interests. This approach not only 
enhances the user experience but also fosters 
an interactive and personalized digital envi-
ronment, encouraging deeper engagement 
with the ALS's resources and research oppor-
tunities.

The application of AI extends into the 
realm of impact analysis and sentiment analy-

sis [44], providing the Communications team 
with a comprehensive understanding of the ef-
ficacy of their efforts and the public’s percep-
tion of the ALS. These insights enable the 
team to refine their strategies, celebrate suc-
cesses, and proactively address any areas of 
concern, ensuring that the ALS's communica-
tions are both effective and positively re-
ceived.

Content generation, powered by AI, offers 
a solution to the often time-consuming task of 
drafting routine communications and summa-
rizing complex technical topics for diverse 
audiences. AI tools can automate these pro-
cesses, generating draft content that maintains 
the ALS's voice while making sophisticated 
scientific achievements accessible and under-
standable to non-specialists.

Finally, the enhancement of visual content 
through automated image and video process-
ing showcases the potential of AI to revolu-
tionize the creation and optimization of multi-
media resources [46]. These tools can edit, 
caption, and optimize images and videos for 
various platforms, ensuring that visual content 
is both high-quality and tailored to the context 
in which it will be viewed.

Together, these AI and ML applications un-
derscore a transformative shift in how the ALS 
Communications team operates, enabling 
more effective, personalized, and engaging in-
teractions with the facility’s community and 
enhancing the visibility and impact of ALS 
research on a global scale.

AI and ML in bibliometrics for ALS
The bibliometric analysis at the Advanced 

Light Source (ALS) is undergoing a transfor-
mative shift, thanks to the integration of Artifi-
cial Intelligence (AI) and Machine Learning 
(ML) technologies. These tools are not just 
enhancing the capabilities to track and analyze 
scientific outputs but also shaping the future of 
research impact assessment and strategic plan-
ning at the facility.

Automated literature searches stand at the 
forefront of this transformation. By employing 
AI, the ALS can efficiently streamline the 
search and retrieval process for publications 
associated with its facilities. This capability 
not only saves valuable time but also ensures 
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that even publications that may not explicitly 
mention the ALS in their acknowledgments 
are identified, thereby providing a more com-
plete picture of the facility’s scientific contri-
butions.

The integration of diverse data sources and 
citation analysis further enriches bibliometric 
studies. By aggregating data from publication 
databases, citation indexes, and internal ALS 
records, AI algorithms can assess the research 
impact through citation patterns. This compre-
hensive dataset allows for a more nuanced 
analysis of how ALS research is utilized and 
referenced across the scientific community, 
highlighting its influence and reach.

Topic modeling and trend analysis, pow-
ered by AI, reveal emerging research areas and 
shifts in scientific inquiry [47]. This insight is 
invaluable for guiding strategic decisions at 
the ALS, ensuring that facility upgrades and 
new beamline developments are aligned with 
the future needs of the research community.

Collaboration networks [48] and future 
trends prediction are similarly enhanced 
through AI. By mapping out collaboration net-
works, the ALS can identify key researchers, 
institutions, and collaborations integral to its 
community. Predictive models offer foresight 
into future research trends, assisting in strate-
gic planning and setting priorities that will 
keep the ALS at the cutting edge of scientific 
discovery.

Dynamic reporting tools and advanced vi-
sualization techniques, enabled by ML, auto-
mate the generation of metrics and foster so-
phisticated data visualization. This automation 
not only reduces the manual effort required in 
generating reports but also provides stake-
holders with intuitive, interactive ways to un-
derstand research hotspots, collaboration net-
works, and temporal trends.

Lastly, personalized alerts and recommen-
dations bring a new level of engagement to 
staff and users. AI systems can notify individ-
uals of new publications in their areas of inter-
est or alert them to emerging trends that might 
influence their research. This tailored ap-
proach ensures that the ALS community re-
mains at the forefront of relevant scientific 
developments, fostering an informed and pro-
active research environment.

AI@ALS showcases and activities
Integrating AI/ML at the Advanced Light 

Source represents a significant advancement in 
scientific research. By utilizing AI/ML, ALS 
improves how experiments are designed, con-
ducted, and analyzed. This section presents key 
showcases and activities that demonstrate the 
impact of AI/ML on various aspects of the re-
search process at ALS. From stabilizing photon 
beams to streamlining segmentation for tomog-
raphy, here are a few examples that highlight 
the practical applications and benefits of AI/ML 
in enhancing scientific discovery.

Accelerator
At the ALS we have pioneered AI/ML ap-

plied to synchrotrons: we have demonstrated 
the AI/ML approach both for the operational 
accelerator as well as in the design of future 
accelerators. In the former case, we used an 
ML-based approach to stabilize the ALS pho-
ton beams [49], thus delivering higher stable 
brightness in a feed-forward manner (includ-

ing continuous online retraining) that does not 
rely on conventional feedback approaches 
with their associated tuning, stability, and la-
tency issues (Figure 3).

In the latter case, we have shown how us-
ing AI/ML to develop surrogate models allows 
accelerator designers to perform multi-objec-
tive optimizations over many-dimensional in-
put hyperspaces with large numbers of con-
straints using orders of magnitude less 
computational effort than conventional large 
cluster-based approaches [50]. Such an ap-
proach allows for physicists and engineers to 
effectively iterate much more heavily and 
closely on design optimization for most fore-
seeable sources of imperfection since the AI/
ML approach brings performance evaluation 
down from the many-weeks to the few-hours 
regime (Figure 4).

Automated alignment of beamlines
Beamlines typically contain a dozen of op-

tical elements, from mirror to grating mono-

Figure 3:  Top: ALS vertical beam size (red) greatly improves when ML-based stabilization is on (yel-
low area). Blue trace is the parameter that an ML-based feed-forward tunes to cancel out fluctua-
tions. Bottom: Banding that appears in scanning transmission x-ray microscopy (STXM) images at 
ALS beamline 5.3.2.2 during user ops ID motion (left) disappears after ML-based correction (right).
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chromators and slits, where many degrees of 
freedom are coupled. Machine learning pro-
vides a way to jointly optimize these multiple 
degrees of freedom and ensure optimal opera-
tion of the beamline – this will become in-
creasingly critical as the next generation of 
coherent beamlines developed for ALS-U will 
be less tolerant to misalignment caused by en-
vironmental factors inducing drift.

We have demonstrated at the ALS R&D 
beamline 5.3.1 that automated alignment pro-
cedures based on Bayesian optimization and 
developed in collaboration with NSLS-II can 
be efficiently deployed and used to optimize 
the beam size and flux of the beam [51]. These 
procedures leverage the EPICS/bluesky 
framework [52] that we implemented at the 
beamline as part of a pilot program for instru-

ment controls update and that will be the na-
tive framework for all new ALS-U beamlines 
(Figure 5).

The next generation of beamlines will fea-
ture adaptive optics, to provide exquisite con-
trol of the wavefront of the x-ray beam. Those 
adaptive optics are based on piezoelectric ma-
terials that exhibit drift and hysteresis, making 
them difficult to calibrate and limit their per-
formance, thus making them hard to use in 
regular beamline operation. We have devel-
oped a procedure using neural networks to 
simplify the calibration and enable open-loop 
operation with diffraction limited performance 
[53]. This procedure was initially tested in a 
metrology lab (with visible optics), and then 
successfully implemented at a beamline (in 
collaboration with APS) [54] (Figure 6).

Angle-resolved photoemission spectroscopy 
(ARPES)

Nanoscale Angle-resolved photoemission 
spectroscopy (nanoARPES) is an information-
rich spectromicroscopic technique that mea-
sures the electronic state energies as a function 
of their momentum. The spectra acquired are 
strongly modulated by matrix-element effects 
that are tied to the orbital character of the 
states. Finally, the spin of the electrons can 
also be measured. Thus, all the relevant quan-
tum numbers are accessible in one probe, 
making it ideal to understand the origins of 
important phenomena such as superconductiv-
ity, magnetism, and topology.

Besides this feature, nanoARPES is also 
relatively fast, so that it is possible to screen 
many materials or phases to look for interest-
ing spectral signatures. Our goals can vary: (i) 
to seek previously unobserved spectral signa-
tures that can signal unknown or hidden or-
ders; (ii) to evaluate different materials to un-
derstand their “electronic” phase diagram–e.g., 
Thermal- or charge-density-driven phases that 
are not accompanied by structural transitions; 
(iii) to perturb complex systems at the bound-
ary between competing phases to understand 
the energy landscape. These goals can be ac-
complished by synthesizing multiple samples 
of different chemical or structural degrees of 
freedom–ideally assembled together in librar-
ies on a single substrate platform, or it can be 
through probing heterogeneous assemblies to 
map out different phases–for example by in-
ducing strong strain gradients in a sample to 
probe the strain-dependent phase diagram.

The challenges in this approach are as 
follows:

Intrinsic complexity of the spectroscopic 
data. The many-body degrees of freedom in 
real materials can result in multiple ARPES 
spectral features with complex lineshapes that 
reflect not only the ground states, but also 
complex excitation/deexcitation phenomena. 
The human eye can be drawn to “interesting” 
spectral features that may have nothing to do 
with the material function, while other, “bor-
ing” features like diffuse background might be 
overlooked. There is currently no general 
physics-based a priori interpretation of com-

Figure 4:  ALS-U lattice optimization with an ML-enhanced multi-objective genetic algorithm in 11 
dimensions. The ML-based optimization (top) achieves results similar to traditional processes (bot-
tom) within much shorter time.



Synchrotron Radiation News, Vol. 0, No. 0, 2024� 11

Meeting Report

plex spectral features that could be used to au-
tomate data reduction. This is the rationale for 
ML-based approaches to data reduction.

Dimensionality of the Spectroscopic Data. 
The instantaneous acquired ARPES data unit 

is a 2D megapixel image (Energy vs momen-
tum, acquired in ∼ seconds) but we frequently 
raster these over an additional momentum co-
ordinate to form a 3D volume data set. Com-
parison of one experimental result to the next 
is complicated by differing energy or momen-

tum calibrations or random instrument align-
ment errors. These experimental realities are 
an important constraint on the ML algorithms 
such as Gaussian processing and dimensional-
ity reduction which have to be able to accu-
rately assess what is “new” or “different” 

Figure 5:  Top left: sample code to start an automated alignment procedure (most of the logic is handled by bluesky); bottom left: beam at sample after 
optimization, compared with theoretical size; right: example of the underlying 4-dimensional logic of the scans used for Bayesian optimization.

Figure 6:  Top left, X-ray deformable mirror. Top right, predictive performance over time using a linear model and a neural network. Bottom, beamline 
setup for a beamline ready for a beamline using automated alignment. Demonstration of machine-learning enabled adaptive optics at APS 28-ID.
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about a spectrum without being hung up on 
extrinsic changes in the experiments.
Dimensionality of Experimental Degrees of 
Freedom (DOF). Often experiments are con-
ducted at multiple conditions, where the goal 
is to optimize experimental information, opti-
mize sample quality, or locate novel spectral 
features. These degrees of freedom can in-
clude combinations of temperature, beamline 
settings, in operando parameters like applied 
voltage to control charge density or to scan 
along I-V trajectories. When scanning these 
libraries, there are large swaths of the search 
phase space where nothing happens, separated 
by interfaces where the phase and spectral in-
formation is most interesting, and time should 
be focussed on the latter, not wasted on the 

former. The extreme case of this is the “needle 
in a haystack” problem, where the interesting 
spectra occur for highly localized sets of con-
ditions. Searching this high dimensional DOF 
space efficiently is a common need of these 
approaches.

Goals and Progress. Our short-term goal is to 
scan a 2D spatial domain (x,y) coordinates, 
where each measurement consists of a 2D 
ARPES data map (E vs k). The aim is to seg-
ment the images, identifying all the regions of 
interest with their characteristic spectrum. The 
scanning should be done as efficiently as pos-
sible, so that the information obtained is com-
parable to what would be attained in a standard 
grid scan, but in the minimal number of mea-

surements. The number of individual domains, 
and their spectral features are not known a pri-
ori. Results should be presented in real-time as 
the data are acquired, enabling “human-in-the-
loop” interaction with the data collection pro-
gram. Lastly, the results should be integrated 
into an active ARPES beamline so that the tech-
nique can be tested with real-life user samples.

To test different algorithms, we acquired a 
“ground truth” data set consisting of N0∼8200 
gridded measurements. The sample is a library 
of twisted bilayer graphene composed of a 
polycrystalline graphene layer grown on Cop-
per, then lifted off and deposited on a wafer-
scale crystalline graphene layer [55], Fig. 
ARP1(a). The total spectral intensity is shown 
in Fig. ARP1(b). Probing a number of mea-

Figure 7:  ARP1 (a) Test sample consisting of polycrystal graphene on crystalline graphene, creating an array of bilayer graphene with a distribution of 
twist angles. (b) Ground truth image of sample, where each pixel represents the integrated section of the detected 2D ARPES image. Image consists of 
N0 ∼ 8200 gridded measurements (c) block diagram of Gaussian Processing + K-means clustering algorithm. (d) sequence of clustered positions as a func-
tion of number of GP samples N. (e) The representation of the ARPES spectrum for cluster #0 (highlighted region in (b) as a function of N. From Ref. 
[55].
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surements N < N0 of this data using a combi-
nation of K-means clustering and Gaussian 
Processing (GP) (Fig. ARP1(c)), the autono-
mous algorithm able to identify the unique 
domain elements (# clusters) (Fig. ARP1(d)) 
in about 10% of the data (N∼500) [55]. The 
representative spectrum for each cluster (for 
example in Fig. 1ARP1(e) corresponding to 
the highlighted domain in (b)) similarly con-
verged to its final value with only N ∼ N0/10.

The results above that 90% of the domain-
defined data can be achieved using about 10% 
of the number of measurements. At the time of 
[55] the test code was run on a laptop so there 
was no time advantage, but in the interim we 
have moved the code to a GPU cluster which 
adds only a small overhead to the data collec-
tion, so that we can achieve approximately the 
same x10 performance improvement. In addi-
tion, the code was moved to a RESTful inter-
face so that it could be accessed by users at 
BL7 using the existing labview code, or could 
be used by other beamlines (Figure 7).

Infrared spectromicroscopy
Infrared spectroscopy (IR) measures the 

vibrational modes of chemical groups within 

molecules, providing a unique spectral "fin-
gerprint" that identifies different chemical 
moieties. By detecting how molecules absorb 
infrared light at specific wavelengths, IR can 
reveal detailed information about the chemical 
structure and composition of a sample. This 
technique is highly effective for distinguishing 
between various functional groups and eluci-
dating chemical abundance in a wide array of 
substances. The technique is label free and 
when performed at a synchrotron, it yields a 
sophisticated, label-free characterization tech-
nique that provides spatially resolved imaging 
modality.

Synchrotron Fourier Transform Infrared 
Spectromicroscopy (SFTIR) is used across a 
diverse range of fields, including materials 
science, chemistry, geobiology, and health sci-
ences. The technique generates energy-re-
solved maps with a spatial resolution of 1 mi-
cron, covering areas of hundreds of microns. 
Despite the exceptional brightness of the Ad-
vanced Light Source, which significantly sur-
passes conventional benchtop IR instruments, 
the time required to map a sample size of 
1.5 mm x 1.5 mm at 1 micron resolution can 
exceed a week. This extended duration makes 

extensive spatial spectral surveys challenging. 
This limitation is particularly significant given 
that IR spectromicroscopy is ideally suited for 
mapping and understanding complex spatio-
chemical heterogeneity.

To address these challenges, the Berkeley 
Synchrotron Infrared Structural Biology 
(BSISB) program, in partnership with the Cen-
ter for Advanced Mathematics for Energy Re-
search Applications (CAMERA), has devel-
oped an innovative AI-based surrogate 
modeling method. This method leverages 
Gaussian Process Regression to adaptively ad-
just measurement strategies, enabling rapid and 
autonomous redirection of data collection ef-
forts towards areas likely to contain interesting 
samples. Our approach has drastically reduced 
the time required to survey 1500 x 1500 micron 
samples to just two hours—a task that would 
otherwise be unfeasible [56]. This advancement 
significantly enhances the practicality and effi-
ciency of utilizing SFTIR in extensive and de-
tailed chemical imaging studies (Figure 8).

Tomography
The tomography program at the ALS has a 

long history of applying AI/ML and computer 

Figure 8:  Iterative feedback loop between observed data and underlying probabilistic surrogate model of the full experiment. By modeling the underlying 
spectra in the sample and their predicted uncertainty, informed decisions can be made on where to measure next.
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vision tools to 3- and 4D imaging problems. 
This has included the invention of new types 
of convolution neural networks [57] that can 
be applied to image denoising and image, au-
tomatic detection of fibers in ceramics [58], a 
reverse image search platform for scientific 
images [59], a machine learning approach for 
detecting features in batteries [60].

Recently, a major focus has been to deploy 
segmentation capabilities within MLExchange, 
a web-based platform that aims to lower the in-
troduction barrier of ML techniques for materi-
als science applications. This platform is a 
cross-facility collaborative effort among five 
U.S. Department of Energy national laborato-
ries such as Lawrence Berkeley National Labo-
ratory (LBNL), Brookhaven National Labora-
tory (BNL), Argonne National Laboratory 
(ANL), Oak Ridge National Laboratory 
(ORNL), and SLAC National Accelerator Lab-
oratory. Within this platform, MLExchange of-
fers an assortment of web applications and ML 
algorithms for on-the-fly scientific data analy-
sis. In particular, its high-resolution image-seg-
mentation application [61] enables users to an-
notate high-resolution images on the web and 
use these annotations to train ML-based seg-
mentation models with DLSIA, a Python li-

brary that provides customizable neural net-
work architectures for various data analysis 
tasks, including segmentation [62]. With robust 
trained models, users can automatically seg-
ment large image data sets and visualize these 
results on the web. To achieve this, MLEx-
change makes use of Tiled from the Bluesky 
ecosystem for chunk-wise data access, and Pre-
fect for workflow orchestration. These segmen-
tation capabilities have been successfully tested 
for the segmentation of high-resolution recon-
structed tomography data sets during experi-
ments at a scheduled beam time (Figure 9).

Conclusion and executive 
summary

The advent of machine learning (ML) is 
ushering in a transformative era across do-
mains, making an important impact on science 
overall and at scientific user facilities such as 
the Advanced Light Source. The workshop on 
Machine Learning Needs at the Advanced 
Light Source, held on February 28–29, 2024, 
brought scientists together to discuss the cur-
rent use, challenges, and future directions of 
ML in accelerator operations, data analysis, 
and autonomous data collection. The work-
shop identified key challenges, highlighted 

successful applications, and formulated strate-
gic recommendations for integrating ML into 
ALS workflows. This workshop underscored 
the increasingly pivotal role of ML in revolu-
tionizing the scientific discovery process, en-
compassing every stage: from initial proposal 
conception to autonomous data collection and 
near-real-time analysis to comprehensive 
analysis of complex multi-modal data.

Current applications
ML is being effectively utilized at ALS in 

various domains:

1.	 Accelerator Operations: ML supports 
the optimization and control of complex 
systems, including autonomous opera-
tions, anomaly detection, and predictive 
maintenance. Notable advancements in-
clude ML-based beam stabilization and 
the development of surrogate models for 
accelerator design optimization.

2.	 Beamline Operations: AI and ML 
transform beamline setups, data collec-
tion, and analysis. Applications include 
automated beamline alignment, experi-
ment planning, and ML-augmented 
real-time data analysis.

Figure 9:  Screenshot of the MLExchange image segmentation interface using DLSIA, developed at CAMERA, as a ML backend [62].
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Key challenges
The key challenges that must be addressed 

to realize the potential additional benefits 
from AI/ML include:

1.	 Data Management: Ensuring data is 
ML-ready involves standardized data 
formats, robust data management sys-
tems, and adherence to FAIR (Findable, 
Accessible, Interoperable, Reusable) 
principles.

2.	 Integration Complexity: The com-
plexity of integrating AI and ML sys-
tems into existing workflows and the 
need for continuous model retraining to 
adapt to evolving data sets.

3.	 User Training and Adoption: Enhanc-
ing training tools and materials to en-
able users to leverage ML capabilities 
fully and independently.

Future directions
Going forward, we plan to pursue these 

high impact directions in our AI/ML work:

1.	 Advanced AI Systems: Development 
of AI-driven control room assistants, 
reinforcement learning for auto-tuning, 
and advanced feed-forward correction 
algorithms to enhance accelerator per-
formance.

2.	 Enhanced Beamline Operations: Ex-
panding the use of digital twins for 
beamline alignment, autonomous oper-
ations, and adaptive scanning to im-
prove experimental outcomes and 
efficiency.

3.	 Comprehensive Data Analysis: Im-
plementing ML for multi-modal data 
analysis, predictive maintenance, and 
anomaly detection to ensure high oper-
ational reliability and quick recovery 
from outages.

Strategic recommendations

1.	 Data Infrastructure: Invest in central-
ized data repositories, standardized 
metadata documentation, and auto-
mated data collection systems to sup-
port AI and ML applications.

2.	 Machine Learning as a Service: Im-
plement a centralized system where ML 
inference is enabled through API calls, 
hosting models, algorithms, and GUIs 
accessible to the ALS community. This 
approach will streamline workflow 
setup, enable near real-time analysis, 
and support automation, thereby en-
hancing the efficiency of utilizing ML 
models.

3.	 Collaborative Efforts: Foster collabo-
rations with other research institutions 
to align with global FAIR data stan-
dards and share datasets for broader sci-
entific impact.

4.	 Continuous Improvement: Imple-
ment continuous education and train-
ing programs to ensure researchers can 
fully utilize AI and ML technologies, 
promoting a culture of innovation and 
collaboration.The integration of AI 
and ML at ALS promises to revolu-
tionize research by enhancing experi-
mental design, data collection, and 
analysis processes. This will ulti-
mately lead to more efficient and im-
pactful discoveries, breakthroughs, 
and advancements across various sci-
entific disciplines.
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