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A B S T R A C T

Fourth-generation storage rings enabled by multi-bend achromat lattices are being inaugurated worldwide and
many more are planned for the next decade. These sources deliver stable ultra-high brightness radiation with
unmatched levels of transverse coherence by virtue of their highly advanced magnetic lattices. Optimization
of these challenging and strongly nonlinear lattices with many degrees of freedom bounded by extensive sets
of constraints and multiple often conflicting optimization goals is highly demanding and requires application
of the most advanced numerical tools available to the community. While multi-objective genetic algorithms
have been very successful in supporting these optimization efforts, the algorithms suffer from a fundamental
limitation of their stochastic nature: an exceedingly vast number of candidate lattices, most of which eventually
are rejected, has to be fully evaluated. This comes at immense computational cost and thus drives excessive
runtime despite use of large supercomputing clusters. We therefore propose to employ deep learning techniques
and iterative retraining of neural networks to massively accelerate such lattice evaluation, thereby allowing
lattice optimization to rely on far fewer a priori assumptions, open up to larger search ranges, and include right
from the start and in parallel multiple error distributions to find truly global optima, all while completing a
full optimization campaign in weeks rather than months. In this paper we present the neural network designs,
the deep learning approach, iterative retraining procedures, and demonstrate how these machine learning
techniques can be incorporated into existing state-of-the-art optimization workflows with only minimal changes
applied to the optimization pipeline itself and none at all to the employed tracking codes.

1. Introduction

Storage-ring based synchrotron light sources around the world are
presently undergoing a massive transformation. Pioneered in MAX
IV [1], the multi-bend achromat (MBA) [2] lattice has ushered in the
era of 4th-generation storage rings (4GSRs): a class of ring-based light
sources capable of delivering stable ultra-high brightness diffraction-
limited synchrotron radiation with a high degree of transverse co-
herence simultaneously to dozens of beamlines. The MBA lattice—
presently foreseen by almost every new source and upgrade project—is
composed of many small-aperture magnets with high field gradients
capable of providing the strong focusing necessary to achieve ultra-
low emittance. This strong focusing reduces the dispersion and drives
the natural chromaticity in the lattice. Combined, this calls for very
strong sextupoles leading to highly nonlinear lattices exhibiting limited
dynamic aperture (DA) and momentum aperture (MA) compared to
those of 3rd-generation light sources. Apart from the many engineering
difficulties in the design of a 4GSR, the beam physics and lattice
optimization itself present a significant challenge due to the large
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number of magnets that need to be tuned in a multi-variate and multi-
objective optimization process. Apart from lattice design expertise, this
usually calls for the most advanced numerical and analytical resources
available to the community.

Multi-objective genetic algorithms (MOGA) [3] have proven to be
one of the most successful and commonly used tools for the optimiza-
tion of modern light source lattices [4–6]. Multiple variants of MOGA
are available, among which the Pareto-based algorithm NSGA-II is the
most popular [7,8]. Optimization of an MBA lattice with MOGA is
highly non-trivial since ultra-high brightness, lifetime, and injection
efficiency are usually in direct competition and a suitable trade-off
needs to be carefully established, taking into account an exceedingly
large number of constraints. While MOGA is extremely well equipped to
undertake such optimization, it suffers from the fundamental limitation
that—as a stochastic process—it requires a vast number of candidate
lattices to be evaluated. Nonlinear lattice evaluation based on many-
turn particle tracking is very CPU-expensive and nevertheless, almost
all evaluated lattices are eventually rejected by MOGA. This weakness,
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Introduction

• 4th-generation	storage	rings	(4GSRs)	leverage	MBA	lattices	to	
render	ultra-high	brightness	with	large	coherent	fraction	
•MBA	lattices	are	very	challenging:	dense	&	exploit	very	strong	
focusing	➔	drives	strong	chromatic	&	higher-order	corrections	
• Solutions	often	highly	nonlinear	&	involve	many	degrees	of	
freedom	(DoF)	➔	demanding	optimization:	
- tough	objectives,	many	of	which	often	in	direct	competition	
- large	number	of	parameters,	many	boundary	constraints	

•Multi-objective	genetic	algorithms	(MOGA)	are	highly	successful	
at	such	optimization	&	have	become	tool	of	choice	
• However,	stochastic	nature	is	inherent	weakness	➔		need	to	
evaluate	vast	number	of	lattice	candidates,	most	ultimately	
rejected	
• Do	not	want	to	artificially	limit	DoF,	search	ranges,	or	make	many	
initial	assumptions	about	attractive	solutions	➔	so	what	can	we	do?
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Figure 1.1.1. The planned ALS upgrade will involve removal of the existing accelerator lattice and installation of a multibend 
achromat lattice and an accumulator ring for swap-in, swap-out injection. The electron beam cross section will change from 
wide horizontally (left) to approximately circular (right) and small enough that the resulting x-ray beams will be transversely 
coherent (i.e., diffraction limited) through the entire soft x-ray regime.
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As a result, coherence-based experiments that are now done routinely with longer-wavelength lasers will 

become possible with x-rays with up to 1000-fold shorter wavelengths that are therefore sensitive to 

nanoscale phenomena.
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experiment with a given spatial, spectral, and temporal resolution, and is proportional to brightness divided by the square of 
the photon energy.
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Introduction:	Machine	Learning	(ML)	to	the	Rescue
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•ML	can	be	employed	to	render	neural	networks	(NNs)	➔	surrogate	
models	used	in	lieu	of	computationally	expensive	evaluation	(e.g.	
many-turn	nonlinear	tracking)	
• Lattice	candidate	evaluation	becomes	near	instantaneous	➔	ideally,	
want	to	speed	up	MOGA	without	modifying	MOGA/tracking	tools	
or	existing	workflows	&	without	sacrificing	physics	fidelity	
• Previous	attempts	[1-4]	have	focused	on	various	aspects,	but	we	
set	out	with	a	different	emphasis:	
- Direct	optimization	of	relevant	physics	quantities	(ε0,	DA,	MA)		
- Combined	linear/nonlinear	optimization	involving	all	free	
parameters	(quadrupoles	&	sextupoles)
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• ALS-U	storage	ring	(SR)	calls	for	a	challenging	
9BA	in	order	to	achieve	≈75	pm	rad	(round	
beam)	at	2	GeV	in	<200	m	circumference	
• But	retain	booster	(BR)	&	linac	(LN)	➔	build	
accumulator	ring	(AR)	to	damp	&	top	off	
• 9BA	SR	lattice	tailored	for	highest	soft	x-ray	
brightness	➔	dense,	strong,	very	strained	
• Highly	staged	MOGA	approach	resulted	in	
- ±1	mm	DA	(on-axis	swap-out	injection	with	AR)	
- ≈1	hr	lifetime	(with	3HCs)

ALS-U	as	a	Test	Case
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• ALS-U	9BA	has	4	sextupole	families:	2	required	for	chromatic	
corrections	➔	leaves	2	harmonic	families	(SH1	&	SH2)	for	
optimization	of	DA	&	MA	
• Small	&	simple	3-layer	NN	renders	accurate	prediction	of	
DA/MA	as	a	function	of	2	SH	variables	[5]	instead	of	many-
turn	tracking	with	TRACY	
- Training	involves	low	density	sampling	of	2D	input	space	
- 202	samples	tracked	for	training	data	➔	predictions	
accurate	to	within	≈2%	rms	
- Overall	speedup	≈	factor	625	(vs.	traditional	MOGA	
requiring	250,000	lattices	tracked)	
- NN	design	&	training	can	be	automated,	2	lines	of	code	
modified	in	MOGA	optimization	code

A	First	Simple	NN	for	Sextupole	Optimization
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var2

<latexit sha1_base64="SxVdcx+Vi3Wr4iojnLv3YymtEOY=">AAAB9XicbVDLSgMxFM3UV61Vqy4FCRbBVZkpoi4Lbly2YB/QjiWTZtrYPIYko5ShS//BjQtF3Lrtd7jzG/wJM20X2nogcDjnXu7JCSJGtXHdLyezsrq2vpHdzG3lt3d2C3v7DS1jhUkdSyZVK0CaMCpI3VDDSCtSBPGAkWYwvEr95j1RmkpxY0YR8TnqCxpSjIyVbjscmYHiiQzuvHGuWyi6JXcKuEy8OSlW8pPa9+PRpNotfHZ6EsecCIMZ0rrtuZHxE6QMxYyMc51YkwjhIeqTtqUCcaL9ZJp6DE+s0oOhVPYJA6fq740Eca1HPLCTaUq96KXif147NuGln1ARxYYIPDsUxgwaCdMKYI8qgg0bWYKwojYrxAOkEDa2qLQEb/HLy6RRLnnnpbOabaMMZsiCQ3AMToEHLkAFXIMqqAMMFHgCL+DVeXCenTfnfTaaceY7B+APnI8fHbiV6Q==</latexit>

obj1

<latexit sha1_base64="r3UkNVRVA0Nlf1tRFz9/fAizYiM=">AAAB9XicbVDLSgMxFM3UV61Vqy4FCRbBVZkpoi4Lbly2YB/QjiWTZtrYPIYko5ShS//BjQtF3Lrtd7jzG/wJM20X2nogcDjnXu7JCSJGtXHdLyezsrq2vpHdzG3lt3d2C3v7DS1jhUkdSyZVK0CaMCpI3VDDSCtSBPGAkWYwvEr95j1RmkpxY0YR8TnqCxpSjIyVbjscmYHiiQzuyuNct1B0S+4UcJl4c1Ks5Ce178ejSbVb+Oz0JI45EQYzpHXbcyPjJ0gZihkZ5zqxJhHCQ9QnbUsF4kT7yTT1GJ5YpQdDqewTBk7V3xsJ4lqPeGAn05R60UvF/7x2bMJLP6Eiig0ReHYojBk0EqYVwB5VBBs2sgRhRW1WiAdIIWxsUWkJ3uKXl0mjXPLOS2c120YZzJAFh+AYnAIPXIAKuAZVUAcYKPAEXsCr8+A8O2/O+2w048x3DsAfOB8/Hz6V6g==</latexit>

obj2

<latexit sha1_base64="n11smwv+Uu7REGRFyCwswXA1hQ4=">AAACAXicbVC7SgNBFJ2Nrxhfa2wEm8UgpIq7QdQyQQsbIUJekF3C7GQ2GTIzu8zMCmFJGj/An7CxUMTWzk+w80PsnU0sNPHAwOGce+/ce/yIEqls+9PILC2vrK5l13Mbm1vbO+ZuvinDWCDcQCENRduHElPCcUMRRXE7Ehgyn+KWP7xI/dYtFpKEvK5GEfYY7HMSEASVlrrmvsugGgiWXFaPr6uTuoBoSHh/nOuaBbtkT2EtEueHFCp5t/j1fu/WuuaH2wtRzDBXiEIpO44dKS+BQhFE8TjnxhJHejrs446mHDIsvWR6wdg60krPCkKhH1fWVP3dkUAm5Yj5ujLdV857qfif14lVcO4lhEexwhzNPgpiaqnQSuOwekRgpOhIE4gE0btaaAB1CkqHlobgzJ+8SJrlknNaOrnRaZTBDFlwAA5BETjgDFTAFaiBBkBgAh7AE3g27oxH48V4nZVmjJ+ePfAHxts3dOqZ4g==</latexit>

DA/MA Tracking

<latexit sha1_base64="HjxR7RXOrjCoXMX5FItDdo27W1A=">AAACAHicbVBNS8NAEN3Ur1qrRj14ECRYBE8lKaIeC3rw4KEF+wFtKJvttF262YTdjVBCPAj+Ei8eFPFW/Bne/A3+CTdtD9r6YODx3gwz87yQUals+8vILC2vrK5l13Mb+c2tbXNnty6DSBCokYAFoulhCYxyqCmqGDRDAdj3GDS84WXqN+5ASBrwWzUKwfVxn9MeJVhpqWPut32sBsKPrwDC+xvAglPeT3Ids2AX7QmsReLMSKGcH1e/Hw/HlY752e4GJPKBK8KwlC3HDpUbY6EoYZDk2pGEEJMh7kNLU459kG48eSCxjrXStXqB0MWVNVF/T8TYl3Lke7ozPVfOe6n4n9eKVO/CjSkPIwWcTBf1ImapwErTsLpUAFFspAkmgupbLTLAAhOlM0tDcOZfXiT1UtE5K55WdRolNEUWHaAjdIIcdI7K6BpVUA0RlKAn9IJejQfj2Xgz3qetGWM2s4f+wPj4AdRrmjQ=</latexit>

Deep Learning

<latexit sha1_base64="Gsm72RMMJw8g/7y+iu5rAJE2TjE=">AAAB/HicbVDNSgMxGMzWv1qrrvYoSLAInspuEfVY8OKxRfsDbSnZNNuGJpslySrL0t58Di8eFPEqfQ5vPoMvYbbtQVsHAsPM9/FNxgsZVdpxvqzM2vrG5lZ2O7eT393btw8OG0pEEpM6FkzIlocUYTQgdU01I61QEsQ9Rpre6Dr1m/dEKiqCOx2HpMvRIKA+xUgbqWcXOhzpoeRJg8h4csvEwzjXs4tOyZkBrhJ3QYqV/LT2/Xg8rfbsz05f4IiTQGOGlGq7Tqi7CZKaYkbGuU6kSIjwCA1I29AAcaK6ySz8GJ4apQ99Ic0LNJypvzcSxJWKuWcm06hq2UvF/7x2pP2rbkKDMNIkwPNDfsSgFjBtAvapJFiz2BCEJTVZIR4iibA2faUluMtfXiWNcsm9KJ3XTBtlMEcWHIETcAZccAkq4AZUQR1gEIMn8AJerYn1bL1Z7/PRjLXYKYA/sD5+AAYFmKk=</latexit>

Very Slow

<latexit sha1_base64="jvdgjF0nAtTCqUW907APQ3z/lXg=">AAAB9XicbVDLSgMxFL1TX3V8VV26CRbBVZkpom7EghuXFewD2rFk0kwbmskMSaZShv6HGxc+cOvS/3Aj/o2ZtgttPRA4nHMv9+T4MWdKO863lVtaXlldy6/bG5tb2zuF3b26ihJJaI1EPJJNHyvKmaA1zTSnzVhSHPqcNvzBVeY3hlQqFolbPYqpF+KeYAEjWBvprh1i3ZdhOsTSHdudQtEpOROgReLOSPHyw76IX77saqfw2e5GJAmp0IRjpVquE2svxVIzwunYbieKxpgMcI+2DBU4pMpLJ6nH6MgoXRRE0jyh0UT9vZHiUKlR6JvJLKWa9zLxP6+V6ODcS5mIE00FmR4KEo50hLIKUJdJSjQfGYKJZCYrIn0sMdGmqKwEd/7Li6ReLrmnpZMbp1gpwxR5OIBDOAYXzqAC11CFGhCQ8ABP8GzdW4/Wq/U2Hc1Zs519+APr/Qelr5WN</latexit>

var1

<latexit sha1_base64="D//IKKZtAlZxb69evHTn0umnslQ=">AAAB9XicbVDLSgMxFL1TX3V8VV26CRbBVZkpom7EghuXFewD2rFk0kwbmskMSaZShv6HGxc+cOvS/3Aj/o2ZtgttPRA4nHMv9+T4MWdKO863lVtaXlldy6/bG5tb2zuF3b26ihJJaI1EPJJNHyvKmaA1zTSnzVhSHPqcNvzBVeY3hlQqFolbPYqpF+KeYAEjWBvprh1i3ZdhOsSyPLY7haJTciZAi8SdkeLlh30Rv3zZ1U7hs92NSBJSoQnHSrVcJ9ZeiqVmhNOx3U4UjTEZ4B5tGSpwSJWXTlKP0ZFRuiiIpHlCo4n6eyPFoVKj0DeTWUo172Xif14r0cG5lzIRJ5oKMj0UJBzpCGUVoC6TlGg+MgQTyUxWRPpYYqJNUVkJ7vyXF0m9XHJPSyc3TrFShinycACHcAwunEEFrqEKNSAg4QGe4Nm6tx6tV+ttOpqzZjv78AfW+w+nNZWO</latexit>

var2

<latexit sha1_base64="d+jKlz4k+HdxDjCLjuOM6ZkHFaA=">AAAB/HicbVDNSgMxGMz6W2vV1R4FCRbBU9ktoh4LXjxIacH+QLuUbJq2odlkSbLCsrQ3n8OLB0W8Sp/Dm8/gS5hte9DWgcAw8318k/FDRpV2nC9rbX1jc2s7s5Pdze3tH9iHRw0lIolJHQsmZMtHijDKSV1TzUgrlAQFPiNNf3ST+s0HIhUV/F7HIfECNOC0TzHSRura+U6A9FAGSaUyuRNiFIXjbNcuOEVnBrhK3AUplHPT2vfjybTatT87PYGjgHCNGVKq7Tqh9hIkNcWMjLOdSJEQ4REakLahHAVEecks/BieGaUH+0KaxzWcqb83EhQoFQe+mUyjqmUvFf/z2pHuX3sJ5WGkCcfzQ/2IQS1g2gTsUUmwZrEhCEtqskI8RBJhbfpKS3CXv7xKGqWie1m8qJk2SmCODDgGp+AcuOAKlMEtqII6wCAGT+AFvFoT69l6s97no2vWYicP/sD6+AGz2ph0</latexit>

NN Lookup

<latexit sha1_base64="KatFiSQaDrQ5AmcS3qn8PPFqzRs=">AAAB/HicbVDNSgMxGMz6W2vV1R4FCRbBU9ktoh4Lgnhswf5Au5Rsmm1Dk+ySZIVlaW8+hxcPiniVPoc3n8GXMNv2oK0DgWHm+/gm40eMKu04X9ba+sbm1nZuJ79b2Ns/sA+PmiqMJSYNHLJQtn2kCKOCNDTVjLQjSRD3GWn5o5vMbz0QqWgo7nUSEY+jgaABxUgbqWcXuxzpoeRpk8hkcouUHud7dskpOzPAVeIuSKlamNa/H0+mtZ792e2HOOZEaMyQUh3XibSXIqkpZmSc78aKRAiP0IB0DBWIE+Wls/BjeGaUPgxCaZ7QcKb+3kgRVyrhvpnMoqplLxP/8zqxDq69lIoo1kTg+aEgZlCHMGsC9qkkWLPEEIQlNVkhHiKJsDZ9ZSW4y19eJc1K2b0sX9RNGxUwRw4cg1NwDlxwBargDtRAA2CQgCfwAl6tifVsvVnv89E1a7FTBH9gffwA4rOYkg==</latexit>

Very Fast



Simon	C.	Leemann	•	Machine	Learning-Enhanced	MOGA	for	Ultrahigh-Brightness	Lattices	
AMP	Seminar,	April	3,	2023

• ALS-U	9BA	has	4	sextupole	families:	2	required	for	chromatic	
corrections	➔	leaves	2	harmonic	families	(SH1	&	SH2)	for	
optimization	of	DA	&	MA	
• Small	&	simple	3-layer	NN	renders	accurate	prediction	of	
DA/MA	as	a	function	of	2	SH	variables	[5]	instead	of	many-
turn	tracking	with	TRACY	
- Training	involves	low	density	sampling	of	2D	input	space	
- 202	samples	tracked	for	training	data	➔	predictions	
accurate	to	within	≈2%	rms	
- Overall	speedup	≈	factor	625	(vs.	traditional	MOGA	
requiring	250,000	lattices	tracked)	
- NN	design	&	training	can	be	automated,	2	lines	of	code	
modified	in	MOGA	optimization	code

A	First	Simple	NN	for	Sextupole	Optimization

10

[5]	Y.	Lu,	S.C.	Leemann,	C.	Sun,	et	al.,	IPAC2021,	MOPAB106,	p.387.

DA	NN	Prediceon	Error	Histogram

Evaluason	Data	
N=2645

1.8%	rms	
prediceon	error

MA	NN	Prediceon	Error	Histogram

1.9%	rms	
prediceon	error

Evaluason	Data	
N=2645
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[5]	Y.	Lu,	S.C.	Leemann,	C.	Sun,	et	al.,	IPAC2021,	MOPAB106,	p.387.
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Simon	C.	Leemann	•	Machine	Learning-Enhanced	MOGA	for	Ultrahigh-Brightness	Lattices	
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• ALS-U	9BA	@	2nd	stage	MOGA:	
9	quadrupoles,	4	sextupoles	➔	11	free	knobs	
• Roughly	a	dozen	magnet/lattice	constraints	
on	top	of	quadrupole	ranges	(from	1st	stage)	
• Objectives:	ε0,	MA,	and	on-momentum	DA	
(modeled	as	integrated	diffusion	rate)	
• Training	data	for	11D	problem	can	no	longer	
be	acquired	through	equidistant	sampling	of	
input	space	
• Do	not	want	to	make	too	many	assumptions	
or	“wise	choices”	➔	retain	generality	of	
approach…

ML	for	Full	Linear	&	Nonlinear	ALS-U	Optimization	(cont.)

13
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• 9 combined-func#on bending magnets with uniform bending 3.33 deg 

• 7 quad families, 2 chroma#c and 2 harmonic sextupole families
• Space constraints

–  Align the straight to exis#ng ID loca#on 
–  Length of the center straight is 5.145 m
–  Minimum spacing between magnets is 75 mm 

• Magnet strength constraints
– Quad  gradient <105 T/m
–  Inner bend gradient  40 T/m <k1<47 T/m and outer bend gradient  k1<20 T/m
–  Chroma#c sextupole gradient  k2 <7000 T/m^2 and harmonic sextupole gradient   k2 <4000 T/m^2

• Physics constraints
– Maximum beta func#on < 30m

– Equal frac#onal tunes for round beam

– Dispersion in the straight <1mm

QF1 QF2 QF4 QF5 QF6 QF6 QF5 QF4 QF2 QF1QF3 QF3

SF

SD SD

SF

QD1 QD1

SH1 SH2 SH1SH2

B31B1 B2 B3 B3 B3 B3 B3 B2

One sector of 9BA la0ce 

 Magnet Layout and Constraints

 central arc dispersion bump matching straightdispersion bumpmatchingstraight

ALS-U Project | MAC Review | Jan 28-29, 2020 4

Dir_7520754, sol33

Betatron Tune H   =   41.35774         
              V   =   20.35472         
Beta Function H   =    2.04736         
              V   =    2.99831 
Mom. Compaction   =    2.11621E-04      
Chromaticity   H  =  -65.19014         
               V  =  -64.84394
Rad. Loss [KeV]   =  217.23915         
Energy Spread     =    9.43261E-04      
Natl. Emit[pm.rad]=    91.8

Round beam with bunch lengthening

La#ce proper es (v20r)
Courtesy:	Changchun	Sun
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ML	for	Full	Linear	&	Nonlinear	ALS-U	Optimization	(cont.)

14

  

Flow of la�ce op�miza�ons with MOGA for SR la�ce  
Linear & nonlinear opt.Linear Opt.

Linear & nonlinear Opt.
with reverse bend

Linear & nonlinear Opt.
using alternative objectives

Global op�mal
        ~94 pm

v20 v20r

3 Objectives:
● Emittance
● MA 
● Total diffusion rate
 
14 Knobs:
● 9 quad gradient
● 2 harmonic sext.
● 3 reverse bend ang.

Reduce emit by about 
20% but similar DA 

3 Objectives:
● Brightness
● Lifetime
● Dynamic acceptance
 
14 Knobs:
● 9 quad gradient 
● 2 harmonic sext. 
● 3 reverse bend ang.

Lifetime is further 
improved and lattice 
variants are identified

3 Objectives:
● Emittance
● MA 
● Total diffusion rate
 
11 Knobs: 
● 9 quad gradient 
● 2 harmonic sext.

Many runs were carried 
out; hyper-parameters 
and input parameter 
ranges are tuned

2 Objectives:
● Emittance
● Beta

 

9 Knobs:
● 9 quad gradient

To explore input 
parameter and 
objective spaces

Matching Objectives:
● Twiss functions 
● Phase advance 

between SFs
 
6 Knobs:
● 5 quad gradient 
● 1 dipole gradient

Increase natural emit 
by 18% and lifetime by 
10% but similar DA 

Introduce 3.2T 
HBend by matching

HBends

.

v20r

This	stage	will	be	focus	here
Courtesy:	Changchun	Sun
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on	top	of	quadrupole	ranges	(from	1st	stage)	
• Objectives:	ε0,	MA,	and	on-momentum	DA	
(modeled	as	integrated	diffusion	rate)	
• Training	data	for	11D	problem	can	no	longer	
be	acquired	through	equidistant	sampling	of	
input	space	
• Do	not	want	to	make	too	many	assumptions	
or	“wise	choices”	➔	retain	generality	of	
approach…

ML	for	Full	Linear	&	Nonlinear	ALS-U	Optimization	(cont.)
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The purpose of this step is to narrow down the search283

ranges of the quadrupole gradients, thus excluding pa-284

rameters that lead to non-physical (unstable) solutions285

or violate our linear property targets. Because the non-286

linear properties are not evaluated, this stage is very fast.287

The optimization objectives are the natural emittance288

and beta functions in the straight-section mid-points,289

which are directly related to the brightness of the ma-290

chine, the ultimate goal of this lattice optimization. We291

also set a 150 pm rad upper-limit cut-o↵ for the natu-292

ral emittance and reject lattice solutions with straight293

section beta functions larger than 3m or less than 1 m.294

Horizontal and vertical tunes are forced to be nearly iden-295

tical in anticipation of operation at coupling resonance.296

Instead of letting the optimization run its full course, we297

monitor the evolution of the lattice population and stop298

the run when we determine that the emittance and beta299

functions spread over a su�ciently small, but not too300

narrow range. Then, the last generation is selected as an301

initial population for the next stage: linear and nonlinear302

lattice optimization.303

In this 2nd stage, both linear and nonlinear properties304

of the lattice are optimized simultaneously. The linear305

property objectives are the same as before, except that306

beta functions are no longer optimized but rather con-307

strained. A full list of the applied constraints is given308

in Table I. The nonlinear properties to be optimized are309

TABLE I. Constraints for ALS-U Lattice Optimization.

Natural emittance "0 < 155 pm rad
Maximum beta �x,y < 30m
Maximum dispersion ⌘x < 15 cm
Fractional tunes 0.1 < ⌫x,y < 0.4
Dispersion at center of straight |⌘⇤

x| < 1mm
Beta at center of straight 1m < �⇤

x,y < 5m
Beta in central arc bends (B3) �B3

x,y < 4m
Fractional tune di↵erence |⌫x � ⌫y| < 0.01
Chromatic sextupole strength (SF, SD) b2 < 900m�3

310

311

DA and MA which are related to machine performance312

through injection e�ciency and Touschek lifetime. We313

do not directly optimize the injection e�ciency since its314

evaluation is very time consuming and depends on the315

exact injection method. It also strongly depends on the316

exact longitudinal phase space which in turn can be heav-317

ily a↵ected by harmonic cavities; at such an early stage318

in the design process we prefer not to make assumptions319

about such systems yet. In practice, DA can be evalu-320

ated either by 6D tracking to estimate DA area or by 4D321

tracking using frequency map techniques to estimate the322

total di↵usion rate [14–16]. The latter method is used323

in our optimization since it has been observed to render324

superior lattice performance3. The evaluation of Tou-325

3
A smaller but contiguous area of low di↵usion is preferred over

a larger DA that contains many areas of elevated di↵usion (indi-

cating onset of chaotic motion) [14–16].

schek lifetime requires MA evaluations along the machine326

which is extremely time consuming. Instead, averaged327

MA at select points along one sector is used as a proxy328

for Touschek lifetime. In this 2nd optimization stage the329

tuning knobs consist of all 9 quadrupole gradients plus 2330

harmonic sextupole strengths. The chromatic sextupoles331

are tuned by fitting chromaticity to +1 in both planes332

during the optimization. The same constraints as used333

in the linear lattice optimization are again applied here334

in the 2nd stage.335

Both MA and DA are evaluated by including random336

linear gradient and skew errors in the lattices that simu-337

late typical residual beta beating (2-3%) and linear cou-338

pling (about 1%), as they are commonly determined in339

real machines after carrying out lattice calibration and340

correction using orbit-response matrix analysis. Specif-341

ically, the relative normal gradient errors with a sigma342

of 2 ⇥ 10�4 and skew gradient error of 5 ⇥ 10�4 are ap-343

plied to all quadrupoles and combined-function dipoles.344

A Gaussian distribution with 2-sigma truncation is ap-345

plied when the gradient and skew errors are populated.346

These error distributions are retained for the entire op-347

timization stage and only upon its completion, with a348

candidate lattice in hand, alternate error distributions349

are applied and it is verified that these alternate errors350

in the chosen candidate still render comparable perfor-351

mance to the originally optimized lattice.352

The initial population for this 2nd stage optimization353

is taken from the final generation of the previous linear354

optimization stage along with random sextupole gradi-355

ents initially supplied to the first generation. The behav-356

ior and convergence of MOGA can be greatly a↵ected by357

the hyperparameters of the algorithm such as probabil-358

ities and index of mutation and crossover, which deter-359

mine how much the parent and child generations di↵er360

from each other and how frequent they should be mutated361

and crossed over. We found that, for best results, di↵er-362

ent tuning of these hyperparameters are more appropri-363

ate at di↵erent stages of the lattice population evolution.364

Therefore, the optimizations are broken down into sev-365

eral independent runs, where the population generated366

at the end of one run is used as the initial population367

for the next, and the hyperparameters are re-tuned after368

each run. In the earlier runs we set higher mutation and369

crossover probabilities in order to encourage the explo-370

ration over wider ranges; later on, lower probabilities are371

e↵ective to boost convergence speed. Each run typically372

spawns 200 generations. With a typical population size373

of 5000, it usually takes about 2–3 days to complete a374

single run with 1000 computing cores on the ALSACC375

cluster, which is hosted by the LBNL Supercluster and376

has a mixture of di↵erent CPU architectures and mem-377

ory configurations [17]. Usually, several runs are required378

to achieve a fully converged Pareto front. Therefore, this379

whole optimization process for the 2nd stage typically380

takes about a week or two.381

A typical Pareto front resulting from this 2nd stage382

of lattice optimization is shown in Fig. 2. It indicates a383384
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• Instead:	use	first	generations	of	MOGA	data	as	
training	data	for	deep	neural	networks	(DNNs)	
• Use	two	8-layer	DNNs	in	lieu	of	MOGA	calls	to	
TRACY	for	DA	and	MA	(via	many-turn	tracking)	
• Traditional	MOGA	requires	about	640	gen	
(5000	children/gen)	➔	≈8	days	on	1000-core	
cluster	
• Training	2	DNNs	to	get	DA/MA	predictions	≈1%	
rms	requires	about	10	gen	(of	which	only	≈5	used	
due	to	rejection	of	candidates	with	violated	constraints)	
• But	once	DNNs	trained	➔	quasi-instantaneous	
lookup	(16	ms)	vs.	DA/MA	tracking	(88	sec)

ML	for	Full	Linear	&	Nonlinear	ALS-U	Optimization	(cont.)

16

Input

FC + ReLU, 128FC + ReLU, 128

FC + ReLU, 32 FC + ReLU, 64

FC + ReLU, 256

FC + ReLU, 64 FC + ReLU, 32 FC, 1

Fully-connected	(FC)	NN,	using	ReLU	as	activation	function,	#	=	node	depth

N≈20k

N≈5k

Loss	=	Mean	Abs	Error
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• Instead:	use	first	generations	of	MOGA	data	as	
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• Use	two	8-layer	DNNs	in	lieu	of	MOGA	calls	to	
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(5000	children/gen)	➔	≈8	days	on	1000-core	
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lookup	(16	ms)	vs.	DA/MA	tracking	(88	sec)

ML	for	Full	Linear	&	Nonlinear	ALS-U	Optimization	(cont.)
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FC + ReLU, 128FC + ReLU, 128

FC + ReLU, 32 FC + ReLU, 64

FC + ReLU, 256

FC + ReLU, 64 FC + ReLU, 32 FC, 1

Fully-connected	(FC)	NN,	using	ReLU	as	activation	function,	#	=	node	depth

Evaluason	Data	
N=4,874

1%	rms	prediceon	error
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•ML	predictions	are	not	100%	accurate	
(training	data	based	on	initial	optimization	
data	➔	potentially	far	from	Pareto-optimal	
areas	in	input	space)	
•ML-MOGA	solutions	show	disagreement	to	
tracking	validation	➔	converged	solution	
front	is	not	entirely	non-dominated	
•Want	to	retrain	DNNs	with	an	improved	
resampling	of	input	space	➔	more	samples	
closer	to	optimal	solutions	as	in	[5],	…	
• …but	here	for	a	many-dimensional	input	
space	without	making	any	assumptions	on	
smoothness	of	distributions

But	of	course	it’s	a	bit	more	complicated…

19

[5]	A.	Edelen,	N.	Neveu,	M.	Frey,	et	al.,	PRAB	23	044601,	2020.

Original	MOGA	(converged) ML-MOGA	(converged)

Training	Data	
(First	10	Gen	MOGA)
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Original	MOGA	(converged) ML-MOGA	(converged)

Training	Data	
(First	10	Gen	MOGA)

•ML	predictions	are	not	100%	accurate	
(training	data	based	on	initial	optimization	
data	➔	potentially	far	from	Pareto-optimal	
areas	in	input	space)	
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• …but	here	for	a	many-dimensional	input	
space	without	making	any	assumptions	on	
smoothness	of	distributions

But	of	course	it’s	a	bit	more	complicated…

20

[5]	A.	Edelen,	N.	Neveu,	M.	Frey,	et	al.,	PRAB	23	044601,	2020.

Tracking-Validated	
ML-MOGA	(rank-1)



Simon	C.	Leemann	•	Machine	Learning-Enhanced	MOGA	for	Ultrahigh-Brightness	Lattices	
AMP	Seminar,	April	3,	2023

Training	Data	
(First	10	Gen	MOGA)

•ML	predictions	are	not	100%	accurate	
(training	data	based	on	initial	optimization	
data	➔	potentially	far	from	Pareto-optimal	
areas	in	input	space)	
•ML-MOGA	solutions	show	disagreement	to	
tracking	validation	➔	converged	solution	
front	is	not	entirely	non-dominated	
•Want	to	retrain	DNNs	with	an	improved	
resampling	of	input	space	➔	more	samples	
closer	to	optimal	solutions	as	in	[6],	…	
• …but	here	for	a	many-dimensional	input	
space	without	making	any	assumptions	on	
smoothness	of	distributions

But	of	course	it’s	a	bit	more	complicated…

21

[6]	A.	Edelen,	N.	Neveu,	M.	Frey,	et	al.,	PRAB	23	044601,	2020.

Original	MOGA	(converged) ML-MOGA	(converged)

Tracking-Validated	
ML-MOGA	(rank-1)
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• Retraining	DNNs	with	tracking	validation	data	is	
computationally	inexpensive	&	makes	no	
assumptions	on	distributions	
• Retrained	DNN	is	used	for	next	run	starting	with	
inputs	from	final	gen	of	last	run	
• Iterate	this	ML–validation–retraining	process	until	
ML-MOGA	results	reach	the	true	Pareto-optimal	front	
- But	when	is	that?	How	do	we	know	our	
predictions	have	become	accurate	enough	and	
our	ML-MOGA	derived	Pareto	front	is	the	actual	
Pareto	front?	
- Also,	traditional	MOGA	requires	≈640	gen,	ML-
MOGA	trained	on	10	gen	➔	minimizing	no.	of	
additional	required	iterations	is	crucial	to	
maintaining	large	overall	speedup

Repeated	Retraining	Improves	ML-MOGA

22

Added	data	from	
1st	validaeon	step

Evaluason	Data	
N=5,873

1%	rms	
prediceon	error
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• Introduce	two	distance	metrics	for	input/objective	space	
• Euclidean	norms	normalized	in	each	variable	➔	single	unit-
free	relative	measure	for	movement	of	distribution	in	input/
objective	space	
•Metrics	can	inform	us	when	

- MOGA	can	be	considered	truly	converged	(required	for	
full	automation)	
- there	is	no	more	added	benefit	from	an	additional	
iteration	of	retraining–ML–validation	

• For	objective	space,	choice	of	“golden	target”	leaves	some	
freedom	to	lattice	designer	(not	sensitive	as	long	as	chosen	aggressively)	
•MOGA	considered	converged	when	for	large	m	
	

• Consider	retraining–ML–validation	process	converged	once	Δf	

no	longer	reduces	with	additional	iterations

Distance	Metrics	&	Convergence

23
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Distance	Metrics	&	Convergence	(cont.)
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Results

• Retraining	shows	very	quick	convergence	
(6-8	iterations)	
• Once	fully	converged,	ML-MOGA	inputs	&	
objectives	match	those	of	traditional	MOGA	
to	within	“noise	floor”	
• Stochastic	noise	in	MOGA	process	accounts	
for	bulk	of	discrepancy	in	objective	space	
(input	space	shows	excellent	agreement)	
•ML-MOGA	results	remain	true	to	underlying	
physics	changes	(changes	in	error	distribution,	random	error	seed)

25

NIM-A	1050,	168192	(2023)

Iteration	1 Iteration	2 Iteration	3 Iteration	4

Iteration	5 Iteration	6 Iteration	7 Iteration	8
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Tradieonal	MOGA	@	gen	643
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ML-MOGA	converged,	rank-1
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Tradieonal	MOGA	@	gen	643

ML-MOGA	converged,	rank-1
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Tradieonal	MOGA	@	gen	666 Tradieonal	MOGA	@	gen	643

ML-MOGA	converged,	rank-1

Results
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Only	MOGA	random	seed	
changed	➔	same	physics

?

?

ML-MOGA	converged,	rank-1
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ML-MOGA	converged,	rank-1

Tradieonal	MOGA	@	gen	635 Tradieonal	MOGA	@	gen	643

ML-MOGA	converged,	rank-1

Results
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Error	distribution	changed	
➔	different	physics
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Results

31

Error	Set	#1

Error	Set	#2

Primary	trade-off	correctly	
identified	in	both	casesNIM-A	1050,	168192	(2023)
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•ML-MOGA	requires	≈16	gen	tracked	vs.	≈640	for	traditional	MOGA	➔	overall	speedup	≈40	
(depending	on	exact	choice	of	cutoff	Δf)	
• Only	very	minor	modifications	required	to	existing	MOGA	workflow/tools	
• Convergence	defined	in	model-independent	way	➔	process	can	be	automated	&	adapted	to	other	
optimization	problems	(eg.	other	lattices,	or	adding	additional	DoF	such	as	reverse	bending	or	superbends)	
• Only	requirement:	DNN	prediction	errors	need	to	remain	small	(≲2%	rms)	

• Note,	hyperparameter	tuning	&	DNN	architecture	modifications	can	also	be	automated	by	a	
non-ML	expert	(eg.	AutoML)	➔	focus	remains	on	lattice	design	and	beam	dynamics	

• Vast	speedup	allows	for	optimization	of	multiple	error	lattices	in	parallel	➔	resulting	lattice	
candidate	consists	of	inputs	that	are	common	to	all	error	seeds	➔	likeliest	to	produce	Pareto-
optimal	solutions	for	as-built	machine’s	error	distribution	
• Potential	to	fully	automate	entire	workflow	is	highly	attractive

Conclusions
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Thank	You!	

Queseons?
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