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Past research at the Advanced Light Source (ALS) provided a proof-of-principle demonstration that deep
learning methods could be effectively employed to compensate for the significant perturbations to the
transverse electron beam size induced by user-controlled adjustments of the insertion devices. However,
incorporating these methods into the ALS’ daily operations has faced notable challenges. The complexity
of the system’s operational requirements and the significant upkeep demands has restricted their sustained
application during user operation. Here, we introduce the development of a more robust neural network
(NN)-based algorithm that utilizes a novel online fine-tuning approach and its systematic integration into
the day-to-day machine operations. Our analysis emphasizes the process of NN model selection,
demonstrates the superior performance of the NN-based method over traditional feedback methods,
and examines the effectiveness and resilience of the new algorithm during user-operation scenarios.
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I. INTRODUCTION

The performance of storage ring light sources is critically
reliant on the stability of the radiation output in terms of
source position/angle and intensity. A major advance
toward improving the radiation intensity long-term stability
was achieved with the adoption of “top-off” (or “top-up”)
injection [1,2]. The radiation source position/angle stability
is achieved by control of the electron beam orbit through a
combination of local and global orbit feedback (FB) and
feed-forward (FF) systems. Orbit stability at the sub-μm
level, maintained over several hours, is now typical (see,
e.g., [3,4]).
On the short timescale, the stability of the radiation

intensity is primarily affected by the electron beam trans-
verse size response to changes in the insertion device (ID)
parameters (gap and phase) that occur during user oper-
ation. While in general the horizontal beam size is largely
independent of the exact ID settings (as long as the natural
emittance remains dominated by the radiation losses in the

bending magnets), the vertical beam size tends to be
sensitive to the normal and especially skew quadrupole-
field errors originating from the IDs. To compensate for
these errors, the Advanced Light Source (ALS) [5], like
other storage-ring light sources, employs quadrupoles, and
skew quadrupole correctors in an FF configuration [6].
Because of the difficulty of developing an accurate physics

model for the ID errors, the FF corrections are best defined
based on beam measurements. A distinct set of measure-
ments is conducted for each individual ID resulting in the
creation of lookup tables that, in correspondence to the given
ID gap and phase configuration, specify the lattice correc-
tions necessary to remove beta beat and linear coupling.
Linear superposition is then invoked to combine the correc-
tions originating from all the IDs. Since these measurements
are time-consuming, the quality of the lookup tables can be
negatively affected by the machine short-term drifts during
the measurement process. Moreover, long-term drifts (due to
factors, such as ground motion and radiation aging of
magnets) will eventually compromise their effectiveness in
driving the FF correction, and violation of the linear super-
position assumption will invariably result in imperfect
compensation even in the absence of drifts.
A conceivable way to remedy these shortcomings is to

add a conventional FB system, whereby the vertical beam
size is monitored in real time at a diagnostic beamline and
the control variable driven by the beam size measurement
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excites a vertical dispersion wave through a suitable
combination of skew quadrupole correctors. However, as
the underlying measurement of the beam size is prone to
noise, thus limiting the range of usable FB gain, we found
that an FB system falls short of achieving the required
closed-loop bandwidth to dampen disturbances throughout
the entire desired operational range.
Previous investigations [7] successfully demonstrated

that a more effective approach is to supplement the lookup-
table system with an additional FF system layer based on a
neural network (NN) trained on beam size measurement,
ID parameters, and dispersion wave parameter (DWP) data.
Unfortunately, the implementation in day-to-day ALS
operations of the algorithm proposed in [7] encountered
significant barriers, which have effectively prevented its
sustained deployment beyond initial applications. This
paper addresses the limitations of the NN approach of
Ref. [7] and presents an improved NN algorithm, which is
now successfully applied to routine ALS user operation.
Though discussed in detail later in this paper, Fig. 1

illustrates the method’s effectiveness, showing data from

about a week of ALS user operation following its imple-
mentation in the fall of 2023. As the users continually
adjust the ID parameter setpoints to accommodate their
experiments (the traces in the two top graphs), the mea-
sured rms vertical beam size is seen to remain stabilized
within a band that is very close to the estimated ∼0.3 μm
rms noise floor (red trace in the bottom graph). For
comparison, the plot also shows the inferred beam size
(blue trace) that would have been observed with the NN FF
system turned-off.
Our approach entails a comprehensive analysis of long-

term operational data, which led to the identification of
methods to make the NN model more robust, including the
removal of DWP from its input parameters and instead using
only the ID configurations to predict beam size change.
To ensure the NN model’s adaptability and performance

over time, we have implemented a novel online fine-tuning
technique, which is orders of magnitude faster than the
previously reported method, thereby allowing for a much
quicker response to changing operational conditions
while the NN model continuously learns from new data.
The refined algorithm can regulate the beam size to nearly
the noise threshold of our measurements, achieving an
enhancement of more than a factor of 4 in the signal-to-
noise ratio compared to the previously reported results [7].
A distinctive feature of our system is its seamless

integration with the Experimental Physics and Industrial
Control System (EPICS) [8], achieved through a dedicated
input/output controller (IOC) that is configured with over
600 process variables (PVs). These PVs are instrumental in
providing the extensive monitoring and control capabilities
necessary for the detailed manipulation of the NN-based ID
FF system, ensuring that the system can respond effectively
to a wide range of operational scenarios without the need
for manual adjustments. A Control System Studio
(PHOEBUS) [9] interface serves as the primary platform
for the deployment of the tool, presenting machine oper-
ators with a highly intuitive and reliable means of interact-
ing with the system.
This paper begins in Sec. II A with an in-depth analysis

of the impact of the dispersion wave parameter on beam
size. This foundational understanding informs our meth-
odology for collecting training data, as described in Sec. II
B. The process of selecting the most suitable model
architecture is thoroughly investigated in Sec. II C, ensur-
ing that the chosen model is optimally configured for the
task at hand. The sensitivity of the model to the training
dataset size is discussed in Sec. II D, setting the stage for
the implementation of an online fine-tuning strategy, which
ensures the model remains responsive to changing opera-
tional conditions, as explained in Sec. II E. Section III
focuses specifically on the practical aspects of deploying
our model into routine user operation. Finally, in Sec. IV,
we review the performance of the system during user
operation (Sec. IVA), show its robustness to beam outages

FIG. 1. Operational performance of the NN-based ID FF
system during a user run starting on November 7, 2023. Shown
are the vertical ID gaps (top), the elliptical polarized undulator
(EPU) phase or longitudinal offsets (center), and the vertical
electron beam size (bottom) as measured at ALS diagnostic
beamline 3.1 (red) and as inferred (blue) if no correction had been
applied as calculated using Eq. (1). One beam outage occurred at
hour 42 during that 5 day window; notably, the beam size control
algorithm dis- and re-engaged automatically without human
intervention (see Sec. IV B for a detailed discussion).
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(Sec. IV B), and include a comparative analysis against an
FB system in Sec. IV C, highlighting the advantages of our
NN-based FF approach.

II. MODEL DEVELOPMENT

A. Dispersion wave parameter

The method we adopted to regulate the electron beam
size leverages a common practice employed in storage-ring
light sources during the lattice tuning for machine setup.
The lattice tuning proceeds by adjusting the skew quadru-
poles first to correct for betatron coupling and spurious
vertical dispersion and then to introduce a deliberate
vertical dispersion wave [10], as a means to generate
vertical emittance in order to enlarge the vertical beam
size in a controlled manner and thereby extend the beam
lifetime. At the ALS, the excitation of the dispersion wave
involves the tuning of 32 skew quadrupoles. In the context
of this effort, we define the dispersion wave parameter
(DWP) as the dimensionless scaling parameter that quan-
tifies our adjustments relative to the excitation pattern of the
skew quadrupoles established after completion of a
machine setup.
Previous work [7] included DWP data in the training of

the NN model, on the assumption that the beam size
sensitivity to the DWP could depend on the specific ID
configuration and be impacted by machine drifts. We tested
these assumptions by carrying out repeated measurements
of the beam size response to DWP excitation for various ID
configurations and lattice conditions over an extended
stretch of time as in Fig. 2. Specifically, this figure presents
vertical beam size measurements at ALS diagnostic beam-
line 3.1 under a zigzag-like DWP excitation taken during

accelerator physics (AP) shifts over about a month. The
data were averaged over 20 beam size measurements at
each DWP step. This dataset encompasses observations
made both prior to, and following, a machine setup,
including cycling of the magnets. The analysis shows no
discernible impact of the ID configurations on the beam
size sensitivity to DWP changes and no evidence of strong
dependence on machine drifts, at least on the time scale of
these measurements.
The measurements did, however, show evidence of

hysteresis effects, which had been previously overlooked.
Fig. 3 displays the beam size measurements conducted
during periodic zigzag-like DWP excitations with two
distinct 0.12 and 0.24 amplitudes, the first being close to
the value we later determined to be required by the NN FF
system during user operation. In this case, the observed
vertical width of the hysteresis loop is 0.15 μm on average;
it is noticeable but remains significantly smaller than the
0.3 μm rms measurement noise and is going to be neglected
in this study. In summary, our findings are consistent with
the following linear dependence of the vertical beam size σy
on the DWP

σyðL;u;DWPÞ ≃ σy;0ðL; uÞ þ σy;1 · DWP; ð1Þ

where the coefficient σy;1 is essentially independent of u,
the vector representing all the ID parameters, and all other
relevant lattice parameters L known to affect the beam size.
Correspondingly, σy;0 is a function describing the relation-
ship between the beamsize and the lattice and ID parameters

FIG. 2. Vertical beam size measurements during a zigzag-like
DWP excitation in the �0.08 range. The left graph depicts the
observed beam size, monitored at various times (indicated by
different color coding) over a span of about a month and
encompasses several distinct ID configurations, as denoted by
the multiple lines within each color group. After subtracting the
time averages, the traces are seen to overlap remarkably well
(right graph), indicating that the beam response to the DWP
excitation is not sensitive to the ID configuration. Note that the
datasets include examples of measurements taken immediately
before (“pre-LOCO“) and after (“post-LOCO”) a machine setup.

FIG. 3. Top left: hysteresis loops showing the response of the
measured vertical beam size to the DWP, as the DWP undergoes a
zigzag excitation with �0.12 (blue) and �0.24 (red) ranges. Top
right: difference between upper and lower branches of the two
hysteresis loops. Bottom: linear fits of the data in the two cases
[see σy;1 in Eq. (1)].
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L and u, respectively, with DWP ¼ 0. We refer to this
quantity as theuncorrected beamsize (see also the blue line in
Fig. 1). Based on these findings, it is justified to exclude the
DWP data from the NN model, with an obvious benefit in
terms of dimensionality reduction. As a result, dedicated
machine time will be required to measure and maintain σy;1
up to date, but these measurements are very quick and they
will not be required often, as the σy;1 dependence onmachine
drift is apparently very limited.
We should add that while neglecting hysteresis effects is

presently justified, this may change if operational con-
ditions and the available diagnostics evolve over time,
causing for example a significant reduction of the meas-
urement noise floor or a requirement for larger DWP
amplitudes. In these cases, the performance of the NN
FF system would likely be improved by considering a more
advanced NN-model that incorporates the histories of the
skew quadrupole settings (see, e.g., [11]).

B. Training data acquisition

The training data for our study are gathered during
dedicated AP shifts, with the machine, otherwise, operated
as under user operation conditions. The dataset was
acquired over a 12-h period, representing the maximum
duration typically allocated within AP shifts.
Each ID is independently exercised to collect relevant

data. For elliptically polarized undulators (EPUs), the
vertical gap, horizontal offset, and polarization are consid-
ered dependent parameters and are treated as such during
data acquisition. Whenever an ID reaches its designated
setpoint, the next setpoint is established, allowing for the
continuous acquisition of relevant data in a time efficient
manner, see Fig. 4 for a graphical representation. To
mitigate undue strain on the ID amplifiers, the control
script incorporates brief pauses whenever a new setpoint is
assigned to an ID.
The setpoints for the IDs are derived from a compre-

hensive analysis of records spanning 2 years of user
operation. This approach ensures that the setpoints accu-
rately represent the operational conditions and require-
ments. However, it is important to recognize that during
regular user operation, IDs predominantly maintain their
setpoints. In contrast, during AP shifts, IDs are more
frequently adjusted as part of the data acquisition process
in order to maximize the sampled volume in the input
parameter hyperspace. Consequently, this leads to a dis-
tinguishable disparity in the data distribution between the
training datasets and the conditions encountered during
user operation.
Throughout the data acquisition process, all ID read-

back values, as well as the vertical beam size as measured at
the diagnostic beamline 3.1, are recorded synchronously at
a sampling rate of 10 Hz through the EPICS-based archiver
appliance [12]. The dataset employed in the subsequent
sections to illustrate the model development comprises a

12-h recording of 27 ID parameters and the resulting
changes in beam size. Overall, 432k data points were
recorded for each channel.
It should be acknowledged that although the data

sampling process is conceptually straightforward, the
actual collection of data for this study encountered signifi-
cant operational challenges. Due to the high value and
limited availability of accelerator physics time, the auto-
mated collection of training data is primarily scheduled
during nighttime hours. However, the nature of the ID
setup, which is not designed for extensive ramping,
presented frequent issues. A common scenario involved
the tripping of one or several ID amplifiers, which are
driving the ID gap or shift changes. These amplifiers often
became unresponsive, at times effectively flat lining the
corresponding ID for several hours until it was noticed by
operators and the amplifier reinitialized. Additionally, the
local ID skew quadrupole correctors, essential for proper
local coupling correction thereby enabling tight beam size
control, tripped on several occasions as well.
The impact of these trips is even more detrimental as it

effectively alters the impact of the ID configuration on the
vertical beam size. The skew power supply trips were
caused by actual insulation damage of the skew quadrupole
corrector coils on an EPU and subsequent ground fault in
certain extreme gap position. Although this insulation has

FIG. 4. Training data acquisition depicting the relationship
between ID parameters and beam size fluctuations. Plotted are the
vertical gaps (top), the horizontal offsets for the EPUs (center),
and the vertical beam size as recorded at diagnostic beamline 3.1
(bottom). The overall training data collection lasted 12 h.
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been repaired and caused no power supply trips since, the
possibility of similar failures has to be taken into account.
These technical setbacks posed substantial obstacles to

the smooth collection of training data and required a careful
measurement strategy that balances very fast sampling of a
large amount of ID configurations with a very low failure
rate during data collection. Notably, the implementation of
watchdog mechanisms was crucial. These watchdogs are
designed to provide auditory FB to operators in the event of
the emergence of known issues, thereby enhancing opera-
tional oversight and response efficiency.

C. Model selection

We conducted investigations into various models and
determined that, consistent with findings in [7], multilayer
perceptron (MLP) NNs [13] as a model yields the most
favorable outcomes. Therefore, our subsequent discussion
will focus exclusively on MLPs.
To explore and evaluate different hyperparameters sets,

we employed grid search as automatic hyperparameter
optimization algorithm [13]. Details related to the search
space of each hyperparameter are outlined in Table I. Our
exploration covered model architectures ranging from a
simple single layer with two neurons to a complex three-
layer structure with a 512-256-128 neuron configuration.
We evaluated each setup with three distinct activation
functions, totaling 387 different model configurations in
our search.
While various approaches exist in the literature for

evaluating machine learning models on training data with
a given set of hyperparameters, we focused on employing
k-fold cross validation due to its well-established statistical
significance [14]. Specifically, we set the number k of folds
to k ¼ 10. Also, the data were partitioned without shuffling
to preserve chronological ordering within each partition.
This consideration is critical given that our data are
sampled at 10 Hz, whereas ID configurations vary on a
timescale of seconds, resulting in slightly oversampled
data. If the selection of the training and test samples was
done randomly, it would increase the risk that the two
datasets become too similar, which would undermine their

use in evaluating the model’s generalization capability on
new data.
For each fold, 20% of the data were randomly sampled

from the training set and considered as validation set, to
prevent overfitting. Before each training stage, the data are
normalized using Z-score normalization [15], where means
and standard deviations are computed over the training set.
The best set of hyperparameters is selected based on the
lowest average test rms error (RMSE) across the ten folds.
Parameter optimization is done using Adam optimizer [16]
with a learning rate set to 10−3. The number of epochs is set
to 1000, and Early Stopping [13] is considered as con-
vergence criterion with a patience of 5 epochs. The MLP is
implemented using PyTorch 2.0.0, and the training was
conducted on an NVIDIA GeForce RTX 2060 GPU.
The results decisively indicate that models with fewer

than three layers underperformed, leading us to eliminate
smaller models from consideration. We observed a perfor-
mance plateau beginning at the model size of 128-64-32,
with negligible gains from larger models. Consequently,
we opted for this particular model size. The rationale
behind this decision is outlined in Sec. II E; the incremental
benefits of a larger model are overshadowed by the
anticipated impact of online fine-tuning. For fine-tuning
purposes, a smaller model size is preferable to expedite the
convergence of training. Hence, the model size of 128-64-
32 is chosen to strike an optimal balance between the
performance and fine-tuning efficiency.
The Tanh activation function exhibited the most optimal

test performance when averaged over the ten folds, leading
to 0.64� 0.03 μm test RMSE. With training and validation
RMSE of 0.30 μm, which aligns with the noise level of the
beam size measurement, it suggests that this can be
considered a well-fitting model for the underlying training
data.
Then, weight decay [14] and dropout technique [17]

were introduced to explore potential improvements in the
generalization capabilities of the best architecture identified
in the aforementioned stage. Their respective values (i.e.,
amount of weight decay and dropout probability) under-
went further optimization through a grid search approach
with tenfold cross validation, the details of which are
provided in Table I. Results are shown in Fig. 5. The
optimal configuration was found to have a weight decay of
10−4 and dropout probability p ¼ 0.2, leading to an
averaged test RMSE of 0.58� 0.06 μm.

D. NN model performance vs dataset size

In this section, we investigate the dependence of the
model performance on the training dataset size. The train-
ing data utilized for this purpose are as detailed in Sec. II B.
It is important to remark that the dataset exhibits a degree of
oversampling, which implies that employing a straightfor-
ward random partitioning strategy for dividing the data into
training, testing, and validation sets would result in highly

TABLE I. Details of the hyperparameters search space for MLP
architecture tuning. To mitigate the number of experimental
permutations, only network settings with decreasing number of
nodes per layer are considered. Dropout and weight decay are
varied only for the best performing MLP architecture.

Hyperparameter Search space

Number of hidden layers f1; 2; 3g
Number of neurons per layer f2ng; 1 ≤ n ≤ 9
Activation function fReLU;Tanh; Sigmoidg
Weight decay f10−ng; 1 ≤ n ≤ 5
Dropout rate f0.2; 0.4; 0.6; 0.8g
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similar subsets. As a result, a more nuanced method for data
partitioning is required.
Our approach starts by dividing the initial 12-h acquis-

ition dataset into nonoverlapping, 1-h test segments.
Random samples of these segments are then used to
evaluate every training set. The training set is sampled
chronologically from the remaining 11 h, with its size
incrementally expanded from 1 to 11 acquisition hours for
the analysis in a bootstraplike approach [14]. In particular,
for every specified size of the training dataset, we draw five
individual training sets from the overall available 11-h
periods. The results on predicting the test dataset for each
training size are then averaged across all test hours to derive
the overall performance metric.
The outcomes of our analysis are shown in Fig. 6.

Initially, the model demonstrates a promising enhancement
in predicting beam size variations due to the rapidly

changing ID configurations within the allocated machine
time. However, model convergence quickly begins to
decelerate, suggesting that to achieve prediction perfor-
mance at the noise floor of 0.3 μm, an increase in training
data acquisition time by around 50 h would be necessary.
We can conclude that the duration of a standard 12 h shift

is inadequate for thoroughly probing the parameter space
that would be necessary for training a model that is capable
of predicting beam size variations with precision down to
the noise floor. However, extending the data acquisition
time to on the order of 50 h poses significant operational
challenges, rendering such an approach impractical within
the constraints of available machine time.

E. Online fine-tuning

In addressing the complexities of the vast parameter
space outlined in our study, the training of a base model that
can independently and effectively predict the beam size
emerges as a formidable challenge. While we are optimistic
about attaining this level of predictive proficiency in the
future, current limitations compel us to adopt an alternative
methodology that continually adapts the model during user
operation.
During the proof of principle studies [7], such adaptation

has been applied through online retraining by integrating
the original training data with a randomly downsampled
segment from the ongoing user run, subsequently contin-
uing the training of the active model. However, with
hundreds of thousands of samples in the dataset, retraining
demanded approximately 15 min to complete on a CPU,
which significantly limits the model’s reactivity to changes
in the ID configuration space.
However, these challenges are widely recognized in the

deep learning community. Training a network from scratch
requires substantial computational power, memory resour-
ces, and large training datasets [18]. Gathering large high-
quality training datasets is usually the most felt and
challenging task [19], as training a network with a small
dataset frequently results in over fitting issues [20]. Fine-
tuning [13,21] is a widely used solution for addressing these
challenges. The core of this approach lies in the realization
that rapid and efficient adaptation to new data—achieved
through the adjustment of NNweights—can greatly enhance
the model’s predictive accuracy while circumventing the
extensive data processing typically necessitated by compre-
hensive training phases [22]. Fine-tuning has been widely
used in various fields, such as computer vision [19,23–26]
and natural language processing [27–29], where the require-
ments for both the size of training data and the computational
power for training are notably high.
In our approach to fine-tuning the model, we exclusively

utilize data acquired during the current user run, which is
stored in a first-in-first-out buffer, opting not to incorporate
the original training data. To safeguard against any poten-
tial runaway scenarios, each training cycle commences with

FIG. 5. Graphical representation of tenfold cross-validation
grid search results for the optimization of the weight decay
and dropout probability hyperparameters. For each configuration,
the test performance averaged across the ten folds is shown.

FIG. 6. Convergence analysis of model performance over
varying durations of training data size, up to 11 h, using
bootstraplike sampling (five samples).
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the original base model. This strategy effectively anchors
the model, ensuring it remains closely aligned with our
dedicated training dataset, thereby maintaining stability and
reliability in the model’s predictive performance.
Our observations indicate that a buffer size on the order

of 1000 samples optimally balances reduced noise sensi-
tivity with prompt responsiveness to machine conditions
poorly predicted by the initial model. During fine-tuning,
we generally set 20% as validation set, employ a learning
rate of 10−3 and a cap of 1000 epochs, incorporating
an early stopping mechanism activated after 5 epochs
without improvement. Typically, convergence is achieved
well below 100 epochs, with each epoch taking less than
0.01 s on a CPU. This efficiency results in a model update
frequency that typically exceeds 1 Hz. Upon completion of
fine-tuning, the actively deployed model for predicting
beam size variations is replaced with the newly trained
model, initiating a new cycle of fine-tuning from the start.
An ostensible difficulty is that to fine-tune the NN during

operation, one would need to know the uncorrected beam
size data, whereas only measurements of the beam size
after correction are available, since the NN FF system is
always active. One method to overcome this difficulty is to
make use of Eq. (1) to derive the presumed uncorrected
beam size σy;0 from knowledge of the measured corrected
value σy and the current DWP read-back value.
It is worth highlighting that the online fine-tuning

method employed in our study essentially functions as a
form of FB. By adjusting the amount of data in the fine-
tuning buffer, we control the noise level in the data, and by
tuning the fine-tuning hyperparameters, we modulate the
model’s responsiveness to new data. The balance between
FF and FB elements in such an elegant way is a key feature
of our ID compensation algorithm that contributes signifi-
cantly to its robustness.
While this framework yields very good performance as

shown in the following sections, the introduction of FB
components into what was previously a pure FF framework
introduces new challenges. Specifically, the system must
contend with perturbations of the beam size measurement
that can now affect the stability of the beam size. As an
example, it has become necessary to introduce a region of
interest FB mechanism on the CCD crystal of the diag-
nostic beamline camera. This adjustment ensures the
accuracy of the algorithm responsible for calculating beam
size from the captured images as the beam wanders on the
crystal due to slow drift. Additionally, we verified that the
beam size remains consistent regardless of the crystal’s
impact point, confirming its independence from the beam’s
position on the crystal.
Additionally, external factors outside our control, such as

camera malfunctions, disturbances near the diagnostic
beamline table causing vibrations, and beam blowups
due to multibunch instabilities, can impact our operations.
Our current approach uses a first-in-first-out buffer with a

brief duration of approximately 2 min. This approach not
only facilitates rapid updates to the model but also ensures
that incidents severely impacting beam size measurements
only temporarily influence the FF system, thus effectively
mitigating potential problems from FB components.
Moving forward, we plan to explore the potential of
employing anomaly detection methods, such as autoen-
coders [13,30] to identify anomalies in beam size mea-
surements. This advancement would allow for a substantial
increase in buffer size. By utilizing a more compact NN
architecture and expanding the buffer for online fine-
tuning, we might achieve superior performance compared
to our current methodology, all while preserving a rapid
model update rate.
In summary, despite facing certain challenges, the

advantages of our online fine-tuning strategy are substan-
tial, far outweighing the trade-offs. This method offers
exceptional predictive accuracy and operational flexibility,
making it highly suitable for deploying our NN-based FF
system in a production environment. This is especially
noteworthy given the training data constraints highlighted
in the previous section.

III. NN FF SYSTEM DEPLOYMENT

In this section, we discuss specific design choices that
were crucial for the successful deployment of our system in
day-to-day user operation.

A. Architecture

The Python backend, which handles the actual machine
learning part, communicates to and from an EPICS IOC,
equipped with 600 PVs, with a PHOEBUS panel serving as
the user interface for controlling the tool. This interface
ensures real-time interaction between the system’s backend
calculations and the user-operated frontend, facilitating the
dynamic control of the ID feed forward process within the
standard framework utilized in the ALS control system. A
graphical representation is shown in Fig. 7.

FIG. 7. Screenshot of the PHOEBUS control panel depicting the
workflow during operation. In this example, the beam size
correction is active while online fine-tuning is not active.
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The Python backend operates at a frequency of 10 Hz,
executing a series of tasks in a continuous main loop
without interruptions. For enhanced flexibility, it is cur-
rently implemented in Python and operates on a virtual
machine within the control system framework. Looking
ahead, we plan to transition the machine learning backend
to a dedicated IOC in the near future.
Each iteration initiates by reading the model inputs and

control parameters (such as the main loop frequency or
fine-tuning parameters) from the PVs, followed by a
preprocessing step wherein the procedure involves (i) veri-
fying the readings for any errors and (ii) implementing
Z-score normalization [15] on the model inputs. In case of a
PV read error (for example, because a PV is not responding
within the timeout limit), the variable is assigned the last
recorded valid value.
With reference to the workflow panel in Fig. 7 and

notation of Eq. (1), the following steps outline the backend
data processing:
(i) The accelerator is in some state given by the lattice L

and the ID configuration u1, with measured beam size
σy ¼ Y.
(ii) Users request a change to the ID parameters to u2.
(iii) The dY-predictor outputs an expected beam

size change dY ¼ σyðL;u2;0Þ− σyðL;u1;0Þ ¼ σy0ðL;u2Þ−
σy0ðL;u1Þ using the current NN model.
(iv) The DWP predictor calculates the change in DWP

needed to keep the beam size constant using Eq. (1),
ΔDWP ¼ dY=σy;1.
(v) If requested by the control system and no excep-

tions are found (see Sec. III B), ΔDWP is applied to the
machine.
(vi) The uncorrected beamsize needed for online

fine-tuning is calculated from the measured beamsize
σyðL; u2;DWPÞ using Eq. (1) and the DWP read-back
value as σyðL; u2; 0Þ ¼ σyðL; u2;DWPÞ − σy;1 · DWPrbv,
where DWPrbv is the DWP read-back value as descri-
bed below.
(vii) The ID configuration u2 and uncorrected beamsize

σyðL; u2; 0Þ are used as input for the online fine-tuning.
(viii) After each fine-tuning cycle, the current NN is

updated, resulting in an updated dY-predictor.
As mentioned above, the model input parameters are

stored in a first-in-first-out buffer to allow the online fine-
tuning at user-defined time intervals. We opt to integrate this
buffer using Python to enhance flexibility during the initial
deployment phase, given that EPICS PVs suitable for storing
such a buffer cannot alter their length without rebooting
the IOC.
A dedicated thread is executed for fine-tuning the

original base model, ensuring simultaneous operation with
the primary loop and allowing for the uninterrupted appli-
cation of the model in predictions. Finally, after the fine-
tuning convergence criteria are reached, the model used in
the main loop is replaced with the new fine-tuned model.

The read-back value of the DWP is recorded at the
EPICS level. To facilitate the calculation of DWP values for
each skew quadrupole, the golden values have been stored
as EPICS PVs. This allows deriving DWP values from the
actual power supply read-back values in combination with
the corresponding golden values.
It is worth noting that a critical design decision was to

centralize all control logic within EPICS instead of dis-
persing it between PHOEBUS or the Python backend. This
choice was informed by EPICS’s superior speed and its
archival capabilities, ensuring that all changes and updates
remain swift and traceable. Such centralization bolsters the
system’s robustness and flexibility, allowing for all logic
changes to be managed and implemented within a singular,
regulated framework, thereby streamlining system updates
and maintenance. An example is the inhibitor chain as
described in the following section.

B. Inhibitor chain

The implementation of a dedicated EPICS-based inhibi-
tor chain is integral to the secure deployment of the NN-
based FF system during user operation at the facility. This
inhibitor chain, by design, does not initiate the NN-based
FF but acts as a safeguard, preventing closing of the FF
loop (i.e., adjusting skew quadrupole magnet setpoints)
unless specific operational criteria are satisfied, see Fig. 8
for a graphical representation.
The chain’s conditions are outlined as follows: the

minimum beam current must be met, the fast orbit FB
(FOFB) system must be operational, the wiggler must be
in a closed position (as a proxy for accelerator in user

FIG. 8. Screenshot of the PHOEBUS inhibitor pop up indicating
which channels of the inhibitor chain are enabled (green) or
disabled (red). Manual override options allow for flexible use in
specialized experimental environments.
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operation conditions), the local ID FFs need to be active,
and the skew quadrupole power supplies must be function-
ing in their regular capacity. For each condition, there is a
provision for manual override, allowing individual com-
ponents of the inhibitor chain to be selectively bypassed if
necessary. Moreover, the entire inhibitor framework is
designed with an option for complete deactivation, offering
flexibility to accommodate specific scenarios, such as
during specialized experimental runs, thus providing a
balance between stringent safety protocols and operational
convenience. A figurative example of the inhibitor chain in
operation during a beam outage is shown later on in Fig. 11.

IV. NN FF SYSTEM PERFORMANCE

In this section, we evaluate the capabilities of the neural
network-based ID FF algorithm to stabilize the vertical
beam size at the ALS. As detailed in [7], scanning trans-
mission x-ray microscopy (STXM) [31] beamlines are very
sensitive to variations of the transverse photon distribution,
and the quality of their experiments can be significantly
impacted by such fluctuations.
Our measurements have established a linear relationship

between variations in the vertical beam size at the diag-
nostic beamline 3.1 and subsequent changes in intensity
observed in STXM scans taken at beamline 5.3.2.2 (con-
sistent with resulting vertical beam size changes being
driven by perturbations of the vertical dispersion).
Specifically, we observed that a 10% change in the vertical
beam size resulted in approximately a 9% intensity change
in the STXM scan. Prior to the deployment of our beam
size correction algorithm, such fluctuations have been
common during user operations over the duration of a
STXM measurement, representing a tenfold enhancement
relative to the intrinsic noise floor of this STXM beamline.

A. Performance during user operation

At the time of writing, the NN-based FF system had been
continuously operational for 2 months. The performance
over about 1 week was showcased in the introduction in
Fig. 1 and was typical. The vertical beam size stability has
been remarkably consistent, to within an average of
0.32 μm rms per user run (or 0.75%), closely approaching
the measurement noise floor at 0.3 μm rms.
This can be seen in more detail in Fig. 9: data points to

the right of the shaded area, where the 2-month period with
operating NN FF system is segmented into seven unin-
terrupted user operation intervals. For each interval, we
report the rms beam size fluctuations before correction
(blue), and as corrected using the base model without fine-
tuning (red), and finally as measured with correction by the
fine-tuned system (crosses). The blue and red data points
are inferred quantities; specifically, the blue data were
obtained by subtracting the contribution due to the DWP
adjustments from the measurement of the stabilized vertical

beam size. Barring the small hysteresis effects not
accounted for in our simplified model (see Sec. II A),
we believe that the uncorrected beam size so calculated
should be a fairly accurate estimate of the actual beam size
that would have been observed without correction. Note
that in this figure, the data points are time averages during
the operation period (about a week).
The red data points preceding the shaded area are the

result of a study, in which the NN model trained on June
2024 was retroactively applied to archived data of beam
and ID parameters from the preceding year.
It should be noted that at the time, the ALS archived data

had two important limitations. First, the vertical beam size
in the absence of closed IDs was neither routinely measured
nor archived, meaning that only relative beam size changes
could be evaluated (therefore, in the figure, the preshut-
down data points represent rms deviations from the average
beam size measurement over a week). Second, the down-
sampling of the long-term storage of the PVs had the
unfortunate consequence of causing a loss of synchroniza-
tion between the ID configuration and beam size meas-
urement data streams, with time errors up to 20 s
(incidentally, for these reasons, using archived data for
training a base model proved unfeasible).
In spite of these limitations, the backward-test results are

instructive. One can observe that the distributions of the
uncorrected and corrected (without fine-tuning) data points
both before and after the shutdown appear to remain roughly
similar over time, suggesting that whatever machine drifts
may have been present they did not compromise the accuracy
of the NN model significantly. This suggests two positive
practical consequences: there is likely no need to refresh the
base model frequently and it could be possible to improve
accuracy by accumulating data gathered from user operation
over extended periods of time.

FIG. 9. Data on the right of the shaded area are with the NN FF
system fully deployed: crosses represent the vertical beam size
rms fluctuations as corrected by the fine-tuned NN model and
measured. They are compared to the uncorrected (blue circles)
and partially corrected (red circles) beam size fluctuations, the
latter representing the correction made by the NN FF system
without fine-tuning; the values for both of these datasets are
inferred estimates (see body text). Each data point is a time
average over about 1 week of user operation. The data points on
the left of the shaded area represent a backward-test of the NN
model based on archived data.
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Additional insight can be gained by data analysis in the
frequency domain. In Fig. 10, a discrete Fourier trans-
formation was applied to analyze a combined total of 760 h
of user operation data with the NN FF system on. The graph
confirms that the system is effective over a broad range of
frequencies. The spikes observed at approximately 0.1 Hz,
linked to EPU phase switching, highlight areas of potential
further improvement, likely to be achieved with the
acquisition of better training data. The loss of correction
effectiveness seen at the lower end of the frequency range is
also likely to be impacted by the EPU phase switching.
While the switching occurs on a time scale on the order of
seconds, this repetitive motion often extends over many
hours or even days, resulting in a low frequency modulation
of the data. However, the total integrated spectral power
within in the lower frequency range is small, minimally
impacting the system’s overall performance.
This context emphasizes the robust performance of

the NN-based FF system across the evaluated time frame,
demonstrating its effectiveness in maintaining beam sta-
bility despite the perturbations caused by EPU switching.

B. Recovery after beam outage

During the reported 2-month operation period, the facility
experienced 12 instances of beam outages, each followed by
subsequent recovery. The intervals between these events
ranged from a few minutes to several hours. Notably, in
each instance, the NN-based FF disengaged at the trip and
autonomously closed its loop again shortly before the
accelerator resumed user operation. This seamless re-engage-
ment occurred without the need for manual intervention,
highlighting the algorithm’s robust predictive capabilities and
its substantial contribution to operational automation.
An example of a beam outage event, caused by an rf

power trip, followed by a machine refill and closing of the

NN-based FF loop without human intervention, is shown in
Fig. 11. The beamwas lost at 14∶57, immediately triggering
three of the six inhibitor PVs designed to prevent the NN-
based FF from acting on the skew quadrupoles under
conditions that are not operationally safe and reliable. At
17∶15, during the process of reloading the lattice, the skew
quadrupole power supplies exhibited transient conditions, as
indicated by the activation of all six inhibitor PVs. Following
this, the machinewas refilled. However, a subsequent rf fault
caused another beam loss. The machine was successfully
filled at 19∶56, whichwas then followed by the closure of the
ID gaps. From 20∶03 onwards, all conditions for closing the
FF loopweremet, and skewquadrupole correctionswere one
again applied. This is evidenced by the vertical beam size
returning to its target value of 42.5 μm.

C. Benchmark against a conventional FB system

While attractive in their conceptual simplicity, the
good performance of FB control systems typically extends
only to a limited frequency range. At low gain settings,
these systems tend to exhibit a sluggish response, insuffi-
cient to swiftly counteract the fast perturbations caused by
rapid changes in the ID configurations. Conversely, at high
gain settings, there is an increased susceptibility to noise
amplification. The FB mechanisms, in attempting to cor-
rect for beam position or beam size fluctuations, can
inadvertently elevate the noise within certain frequency

FIG. 10. Frequency spectrum of the vertical beam size during
760 h of user operation with fully functional NN FF system (red)
and the inferred beam size without correction (blue). The features
at around 0.1 Hz are attributed to EPUs, the spikes above 1 Hz are
associated to beam injection transients during top off.

FIG. 11. Example of beam dump with subsequent restart of the
NN-based FF without human intervention. The top two plots
show ID gaps and EPU offsets, respectively. The third plot shows
the vertical beam size and the lower plot the sum of the currently
active inhibitor PVs.
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bands, thereby exacerbating beam instability rather than
mitigating it.
The experimental results presented in Fig. 12 exemplify

such limitations, particularly during instances of fast EPU
phase shifts, in this example EPU 7-2 (70 mm period,
20 eV–1 keV) from þ30 mm to −30 mm. The topmost
trace demonstrates the beam size variation without correc-
tion, with an rms deviation of 1.04 μm. Subsequent traces
illustrate the performance with low and best-performing FB
gains, achieving rms deviations of 0.72 and 0.51 μm,
respectively, indicating improved stabilization yet not
optimal, especially when considering the amplification
of noise as seen in the DWP variation. Remarkably, the
implementation of the NN-based FF correction (bottom
trace) results in a superior rms deviation of 0.44 μm with a
smooth DWP.
A quantitative comparison of various FB gain settings

and the FF correction is achieved by creating a reproducible
scan of ID configurations as depicted in Fig. 13. Drawing
from a previously described table of ID setpoints accumu-
lated over 1 year of user operation, five random settings
for each ID were selected. This cycling procedure allowed
for a dynamic yet controlled environment: each ID would
transition to a new setpoint every 4 s. The experiment is
initially conducted without any correction to establish
a baseline, followed by iterations that included FB
with varying gain settings to assess the FB system’s

performance. Finally, the NN-based FF correction is
applied, providing a direct comparative measure of its
efficacy against the FB mechanism.
Results are shown in Fig. 14. In this specific pattern of

ID configurations, it is feasible to adjust the FB gain
to achieve a level of performance similar to that of
the NN-based FF correction. However, the FF approach

FIG. 12. Vertical beam size (blue) and DWP value (red) during
four instances of a phase shift of EPU7-2. Shown are the case
without correction (top), with low-gain FB active (second from
top), with high-gain FB active (third from top), and with NN-
based FF correction (bottom).

FIG. 13. Illustration of the experimental setup for quantitative
evaluation of the beam size correction. The top two plots show
the vertical ID gaps and horizontal EPU offsets, respectively. The
two bottom plots show the uncorrected beam size and the beam
size while running the NN-based FF correction.

FIG. 14. Vertical rms beam size variation during the controlled
setup (see Fig. 13) for various FB gains (blue) and the
performance of the NN-based FF correction (black).
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consistently yields favorable outcome. It is important to
highlight that no FB configuration was able to match the FF
results during rapid EPU transitions, as shown in Fig. 12.
These frequent and significant EPU alterations, which
greatly affect the beam size, are a routine aspect of regular
user operation and can persist for extended periods.

V. SUMMARY AND CONCLUSIONS

In this paper, we detailed the creation and implementa-
tion of a NN-based FF algorithm designed to stabilize
the vertical electron beam size at the ALS against ID
perturbations.
We have outlined our model development process,

initiated with the reassessment of existing premises, which
guided us to a model architecture that increased both
simplicity and accuracy. We have documented the data
preparation protocol, the careful selection of the model
through hyperparameter tuning, its validation against his-
torical data, the integration of online fine-tuning features,
and its demonstrably enhanced performance over tradi-
tional FB mechanisms in a variety of operational settings.
This algorithm has operated continuously for 2 months

of user operation at ALS with minimal human intervention,
even amidst beam outages. Throughout this period, the
variation in beam size remained nearly indistinguishable
from the measurement noise.
The successful deployment of this NN-based ID FF

system represents a significant milestone in the operational
enhancement of synchrotron light sources. It not only
demonstrates the feasibility of employing advanced
machine learning techniques in routine user operation
within the complex environment of particle accelerators,
but also sets a precedent for the utilization of such
technologies to improve the performance and reliability
of these critical research facilities by highlighting the full
lifecycle of deep learning models, including retraining and
continuous operation.
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