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Intro: Machine Learning (ML) at the ALS

« ALS ML efforts have so far been enabled by a 3-year grant funded jointly by DOE BES ADRP
& ASCR

 Initial ALS ML R&D effort: use ML as powerful “new” tool to solve “old” accelerator problems:

« Accelerator operations: automated tuning, replace feedback approaches, virtual
diagnostics

« Accelerator development: improve physics understanding, augment/extend lattice
optimization, accelerate multi-objective optimization (e.g. MOGA)

« Two ALS examples today:

* Project #1: ML stabilization demonstrated on operational accelerator published in PRL
* Project #2: ML-enhanced optimization approach recently submitted to PRAB
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https://doi.org/10.1103/PhysRevLett.123.194801

What is the Advanced Light Source?
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What is the Advanced Light Source?

Synchrotron Radlatlon Source (“Ilke a mlcroscope for x-rays”)
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What is the Advanced Light Source?

Triple-bend achromat
(12 sectors)

s-position [m]

ALS TBA 2013, &0 =2 nm rad

12 long straights
14 insertion devices (high brightness)

3 superbends (hard x-rays)

=40 beamlines = IR, UV, soft & tender x-rays
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What is the Advanced Light Source?

=40 beamlines, =5000 hrs/y, =2000 users/y

Quantum Materials (MAESTRO) 7.0.2 7.3.1 High-Pressure In Situ Soft X-Ray Spectroscopy
Coherent Scattering and Microscopy (COSMIC) 7.0.1 Lob 7.3.3 SAXS/WAXS/GISAXS
Calibration, Optics Testing, Spectroscopy 6.3.2 by ) 8.0.1 Surface and Materials Science (RIXS)

Magnetic Spectroscopy / Materials Science 6.3.1 - o ; 8.2.1 Macromolecular Crystallography (BCSB/HHMI)
Full-Field Transmission Soft X-Ray Microscopy 6.1.2 : 8.2.2 Macromolecular Crystallography (BCSB/HHMI)
Energy, Catalytic, and Chemical Science (AMBER) 6.0.1 8.3.1 Macromolecular Crystallography (TomAlberTron)

Double-Dispersion RIXS (QERLIN) 6.0.2 8.3.2 Tomography (micro-CT)
Polymer STXM 5.3.2.2 w~ 9.0 Chemical Transformations
STXM 5.3.2.1 9.3.1 Tender X-Ray Spectroscopy
Research and Development 5.3.1 9.3.2 Ambient-Pressure Soft X-Ray Spectroscopy

Booster .
Ring 10.0.1 ARPES, SpinARPES

10.3.1 X-Ray Fluorescence Microprobe (XFM)

10.3.2 X-Ray Fluorescence Microprobe (XFM)

11.0.1 PEEM3/Resonant Soft X-Ray Scattering

Macromolecular Crystallography (BCSB)
Macromolecular Crystallography (BCSB) 5.0.2
)

LINAC

Macromolecular Crystallography (BCSB
Macromolecular Crystallography (MBC) 4.2.2
High-Resolution Spectroscopy (MERLIN) 4.0.3

11.0.2 Molecular Environmental Science

11.3.2 EUV Lithography Photomask Imaging (SHARP)
/ 12.0.1 EUV Lithography Nanopatterning (MET/METS5)

12.0.2 Coherent X-Ray Scattering

Magnetic Spectroscopy and Scattering 4.0.2
General X-Ray Testing Station 3.3.2
X-Ray Footprinting 3.2.1

National Center for X-Ray Tomography 2.1 “ 12.2.1 Small-Molecule Crystallography
Macromolecular Crystallography (GEMINI) 2.0.1 - 12.2.2 Diffraction Under Non-Ambient Conditions
IR Imaging and Tomography 2.4 12.3.1 SIBYLS—MXand SAXS

12.3.2

IR Spectromicroscopy 1.4 KEY| —— Operational — — Under Development Microdiffraction

Insertion Device  Bend Magnet Superbend
Beamlines Beamlines Beamlines
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#1 ML for Acc Ops: Stabilizing Beam Size at ALS

State-of-the-art light sources achieve excellent stability

in terms of beam position/angle & current (orbit feedbacks,
top-off injection)

In spite of extensive correction efforts, beam size is still

Beam Size (um)

perturbed by insertion device (ID) config changes = can ]

affect experimental resolution
Problem is nonlinear, complex, and non-stationary

Previous solutions relied on approximations & required
extensive dedicated machine time for frequent
recalibration (feed-forward tables)

Resulting level of performance has started to become a
limitation at most demanding experiments & is expected to
become a serious issue in next-generation light sources
(diffraction-limited storage rings, eg. APS-U, ALS-U, ...)

Vertical Gap (mm)
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Developing a Solution Based on Machine Learning

 Machine Learning can exploit large amounts of data that are already collected
during routine operations = “training” ot

 Once trained, neural network (NN) provides s Training
predictions for beam size changes that result from -- —> W
ID config changes & magnet corrections Input Output
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Developing a Solution Based on Machine Learning

Machine Learning can exploit large amounts of data that are already collected
during routine operations = “training” ot

Once trained, neural network (NN) provides s Training
predictions for beam size changes that result from -- —> W
ID config changes & magnet corrections Input Output

These predictions can serve as a dynamic lookup N
- which magnetic correction required to compensate @) —>
for changes resulting from currently applied ID config? B

If such a lookup is incorporated into the accelerator
control system as a feed forward (FF), we can stabilize the storage ring over
prolonged periods of time & online retraining can mitigate drift

PRL 123, 194801 (2019)
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https://doi.org/10.1103/PhysRevLett.123.194801

Results: NN-based FF Off vs. On During User Ops
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https://doi.org/10.1103/PhysRevLett.123.194801

Stabilization Confirmed at Experiment (ALS BL 5.3.2.2)
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https://doi.org/10.1103/PhysRevLett.123.194801

#2 ML for Acc Dev: Improving Multi-Objective Optimization

3rd-gen SRs 4th-gen SRs

« 4th-generation storage rings (4GSRs) leverage multi-bend
achromat (MBA) lattices to deliver ultra-high brightness &
large coherent fraction " 0 =

- But MBA lattices are very challenging: dense & exploit very
strong focusing => drives large chromatic terms &
higher-order corrections

» Solutions not only highly nonlinear but involve many

y [um]

500

Courtesy: Dave Robin

degrees of freedom (DoF) = demanding optimization: 3: y : gen=10(‘)
 tough objectives, many often in direct competition J s | § it
« large number of parameters, many boundary constraints T S g % i)
= Multi-objective genetic algorithms (MOGA) are highly < o oem
successful at such optimization & have become tool of choice s .8
among community i e il S
°85 i s 2

Emittance (m-rad) x 107"

AN

.S. DEPARTMENT OF Oﬁ-‘lce of

s ATA P ENERGY | scerce




Improving MOGA: ML to the Rescue

« But MOGA’s stochastic nature is inherent
weakness = need to evaluate vast number of
lattice candidates, most ultimately rejected

* Do not want to artificially limit DoF, search
ranges, or make many initial assumptions about
attractive solutions = so what can we do?

ML can be employed to render deep neural
networks (DNNs) = surrogate models used in
place of computationally expensive evaluation o . { e
2 o= 0 for z<0

= Evaluation of lattice candidates becomes almost o for 220
instantaneous
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ALS-U Optimization as a Test Case for ML

« ALS-U storage ring calls for challenging 9BA lattice to

achieve =75 pm rad (round beam) @ 2 GeV in <200 m
-> dense, strong focusing, very strained optics
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ALS-U Optimization as a Test Case for ML

« ALS-U storage ring calls for challenging 9BA lattice to
achieve =75 pm rad (round beam) @ 2 GeV in <200 m
-> dense, strong focusing, very strained optics

* Initial optimization: 9 quadrupoles, 4 sextupoles = 11
free knobs (later: include reverse bending & superbends)

Roughly a dozen magnet/lattice constraints on top
of pre-determined quadrupole ranges

Objectives: €9, MA, and on-momentum DA (modeled
as integrated diffusion rate)
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ALS-U Optimization as a Test Case for ML

« ALS-U storage ring calls for challenging 9BA lattice to

achieve =75 pm rad (round beam) @ 2 GeV in <200 m o X10° . x MAL
-> dense, strong focusing, very strained optics :‘.,v‘mq o Zzz:
« Initial optimization: 9 quadrupoles, 4 sextupoles = 11 T AR i 173 1 Moo
free knobs (later: include reverse bending & superbends) 32 k | 0.012
* Roughly a dozen magnet/lattice constraints ontop & 0.014
of pre-determined quadrupole ranges T3l 0.016
* Objectives: €0, MA, and on-momentum DA (modeled § 0018
as integrated diffusion rate) a4 -0.02
« Ultimately, a highly staged MOGA approach resulted in g_sk £0 ?s; ':’W“Lrad . | ooz
 +1 mm DA (compatible with on-axis swap-out & AR) +1 mm DA a ZSZZ
« =1 hr overall lifetime (including x4 boost from 3HCs) €9 1 > -
 ...but required months of CPU time on large clusters Emittance [m-rad] x10 710

Courtesy: Changchun Sun
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ML for Full Linear & Nonlinear ALS-U Optimization

Training data for 11D problem cannot be acquired
through systematic sampling of input space

Instead: use first few generations of conventional
MOGA as training data for DNNs

Two 8-layer DNNs used in MOGA instead of calls to
Tracy for DA and MA (via many-turn tracking)

« Traditional MOGA requires about 640 gen (5000
children/gen) = =8 days on 1000-core cluster

« Training 2 DNNs to get DA/MA predictions =1%
rms requires data from about 10 gen

Training DNNs takes just =30 min on desktop CPU

DNN provides quasi-instantaneous lookup (16 ms)
vs. conventional DA/MA tracking (88 sec)

Quads & ~— 3
Sextupoles

FC + RelLU, 32 FC + RelLU, 64

FC + RelU, 128 FC + RelU, 256 DA/MA

FC + RelU, 64 FC + RelU, 32 -/

Fully-connected (FC) NN, using ReLU as activation function, # = node depth

Courtesy: Yuping Lu
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Results: ML-MOGA Successful & 40x Faster

 Initial ML predictions are not 100% accurate (training based on early data)

* First ML-MOGA solutions show disagreement compared to tracking
validation = but can retrain DNNs with data from validation step

« lterate cycles of validation—retraining—ML-MOGA using model-

independent distance metrics to determine convergence

= ML-MOGA very quickly converges (6-8 iterations) towards true Pareto-

optimal front = overall speedup = 40x (incl. training effort)

* Once fully converged, ML-MOGA inputs & objectives match those

of traditional MOGA to within “noise floor”

* Flexible: can be adapted to other lattice optimization problems as

long as can provide reasonably accurate DNNs

» Potential to fully automate entire optimization campaign & optimize
in parallel from the start for many error lattices is highly attractive =

derive truly global optimum
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Outlook & Opportunities for Collaboration

* ML applied to accelerators shows tremendous potential to enable
* new more aggressive designs, but also
» exploit full performance of existing & soon to be commissioned rings
= These are highly relevant issues in both present (ALS) & future 4th-gen. storage rings (ALS-U)

« ATAP & LBL can foster great collaboration on ML for accelerators
« CRD (the experts on ML) ¢ Daniela Ushizima
* AMP (in-house experts on modeling) ¢ Rémi Lehe (ATAP POC), Gregg Penn, Axel Huebl, Chad Mitchell, Ji Qiang
= https://atap.Ibl.gov/machine-learning-artificial-intelligence-and-particle-accelerators/
« BACI (eg. virtual diagnostics & adaptive control) ¢ Daniele Filippetto, Dan Wang, Du Qiang

« Magnets & ENG (eg. magnetic field mapping & fiducialization, diagnostics, image analysis) ¢ Laura Garcia
Fajardo, Maxim Martchevsky, Al Baskys

« IBT (accelerator optimization using ML) ¢« Qing Ji, Arun Persaud
« ALS & CAMERA (beamline instrumentation = “Digital Twin”) ¢ Antoine Wojdyla, Alex Hexemer
= https://ml4sci.lbl.gov/projects
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