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Recent Machine Learning Applications at the ALS



• ALS ML efforts have so far been enabled by a 3-year grant funded jointly by DOE BES ADRP 
& ASCR  

• Initial ALS ML R&D effort: use ML as powerful “new” tool to solve “old” accelerator problems: 
• Accelerator operations: automated tuning, replace feedback approaches, virtual 

diagnostics 
• Accelerator development: improve physics understanding, augment/extend lattice 

optimization, accelerate multi-objective optimization (e.g. MOGA) 

• Two ALS examples today: 
• Project #1: ML stabilization demonstrated on operational accelerator published in PRL 
• Project #2: ML-enhanced optimization approach recently submitted to PRAB 

Intro: Machine Learning (ML) at the ALS
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https://doi.org/10.1103/PhysRevLett.123.194801


What is the Advanced Light Source?
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What is the Advanced Light Source?
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1.9 GeV e− Storage Ring, 196.8 m, 1993

Booster Ring, 1992

Linac 50 MeV, ≈1990

Synchrotron Radiation Source (“like a microscope for x-rays”)



What is the Advanced Light Source?
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Triple-bend achromat 
(12 sectors)

12 long straights 
14 insertion devices (high brightness)

1 2

3

3 superbends (hard x-rays)

≈40 beamlines ➔ IR, UV, soft & tender x-rays

ALS TBA 2013, ε0 = 2 nm rad



What is the Advanced Light Source?
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≈40	beamlines,	≈5000	hrs/y,	≈2000	users/y



• State-of-the-art light sources achieve excellent stability 
in terms of beam position/angle & current (orbit feedbacks, 
top-off injection) 

• In spite of extensive correction efforts, beam size is still 
perturbed by insertion device (ID) config changes ➔ can 
affect experimental resolution  

• Problem is nonlinear, complex, and non-stationary 
• Previous solutions relied on approximations & required 

extensive dedicated machine time for frequent 
recalibration (feed-forward tables) 

• Resulting level of performance has started to become a 
limitation at most demanding experiments & is expected to 
become a serious issue in next-generation light sources 
(diffraction-limited storage rings, eg. APS-U, ALS-U, …)

#1 ML for Acc Ops: Stabilizing Beam Size at ALS
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ALS	Diagnos;c	Beamline	3.1

Ver;cal	beam	size	@	BL3.1



• Machine Learning can exploit large amounts of data that are already collected 
during routine operations ➔ “training” 

• Once trained, neural network (NN) provides 
predictions for beam size changes that result from 
ID config changes & magnet corrections 

• These predictions can serve as a dynamic lookup 
➔ which magnetic correction required to compensate 
for changes resulting from currently applied ID config? 

• If such a lookup is incorporated into the accelerator 
control system as a feed forward (FF), we can stabilize the storage ring over 
prolonged periods of time & online retraining can mitigate drift

Developing a Solution Based on Machine Learning
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collected	during	rou<ne	opera<ons	
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Results: NN-based FF Off vs. On During User Ops
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Results:	NN-based	FF	Off	vs.	On	During	User	Ops
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NN-based	FF	off
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User	Ops	@	500	mA	top-off

0.93	μm	rms	(1.8%)

0.20	μm	rms	(0.4%)

σy

σx

σy

σx
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Stabilization Confirmed at Experiment (ALS BL 5.3.2.2)
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StabilizaMon	Confirmed	at	Experiment
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#2 ML for Acc Dev: Improving Multi-Objective Optimization
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Simon	C.	Leemann	•	Machine	Learning-Enhanced	MOGA	for	Ultrahigh-Brightness	Lattices	
LEL2022,	ALBA,	Barcelona,	Spain,	June	26-29,	2022
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Introduction:	The	Problem

• 4th-generation	storage	rings	(4GSRs)	leverage	MBA	lattices	to	
render	ultra-high	brightness	with	large	coherent	fraction	
•MBA	lattices	are	very	challenging:	dense	&	exploit	very	strong	
focusing	➔	drives	strong	chromatic	&	higher-order	corrections	
• Solutions	often	highly	nonlinear	&	involve	many	degrees	of	
freedom	(DoF)	➔	demanding	optimization:	
- tough	objectives,	many	of	which	often	in	direct	competition	
- large	number	of	parameters,	many	boundary	constraints	

•Multi-objective	genetic	algorithms	(MOGA)	are	highly	successful	
at	such	optimization	&	have	become	tool	of	choice	
• However,	stochastic	nature	is	inherent	weakness	➔		need	to	
evaluate	vast	number	of	lattice	candidates,	most	ultimately	
rejected	
• Do	not	want	to	artificially	limit	DoF,	search	ranges,	or	make	many	
initial	assumptions	about	attractive	solutions	➔	so	what	can	we	do?
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• 4th-generation storage rings (4GSRs) leverage multi-bend 
achromat (MBA) lattices to deliver ultra-high brightness & 
large coherent fraction 

• But MBA lattices are very challenging: dense & exploit very 
strong focusing ➔ drives large chromatic terms & 
higher-order corrections 

• Solutions not only highly nonlinear but involve many 
degrees of freedom (DoF) ➔ demanding optimization: 

• tough objectives, many often in direct competition 
• large number of parameters, many boundary constraints 

➡ Multi-objective genetic algorithms (MOGA) are highly 
successful at such optimization & have become tool of choice 
among community



• But MOGA’s stochastic nature is inherent 
weakness ➔ need to evaluate vast number of 
lattice candidates, most ultimately rejected 

• Do not want to artificially limit DoF, search 
ranges, or make many initial assumptions about 
attractive solutions ➔ so what can we do? 

• ML can be employed to render deep neural 
networks (DNNs) ➔ surrogate models used in 
place of computationally expensive evaluation 

➡ Evaluation of lattice candidates becomes almost 
instantaneous

Improving MOGA: ML to the Rescue
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Courtesy:	S.	Liu



• ALS-U storage ring calls for challenging 9BA lattice to 
achieve ≈75 pm rad (round beam) @ 2 GeV in <200 m 
➔ dense, strong focusing, very strained optics 

• Initial optimization: 9 quadrupoles, 4 sextupoles ➔ 11 
free knobs (later: include reverse bending & superbends) 

• Roughly a dozen magnet/lattice constraints on top 
of pre-determined quadrupole ranges 

• Objectives: ε0, MA, and on-momentum DA (modeled 
as integrated diffusion rate) 

• Ultimately, a highly staged MOGA approach resulted in 
• ±1 mm DA (compatible with on-axis swap-out & AR) 
• ≈1 hr overall lifetime (including x4 boost from 3HCs) 

• …but required months of CPU time on large clusters

ALS-U Optimization as a Test Case for ML
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Betatron Tune H   =   41.35774         
              V   =   20.35472         
Beta Function H   =    2.04736         
              V   =    2.99831 
Mom. Compaction   =    2.11621E-04      
Chromaticity   H  =  -65.19014         
               V  =  -64.84394
Rad. Loss [KeV]   =  217.23915         
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• 9 combined-func#on bending magnets with uniform bending 3.33 deg 

• 7 quad families, 2 chroma#c and 2 harmonic sextupole families
• Space constraints

–  Align the straight to exis#ng ID loca#on 
–  Length of the center straight is 5.145 m
–  Minimum spacing between magnets is 75 mm 

• Magnet strength constraints
– Quad  gradient <105 T/m
–  Inner bend gradient  40 T/m <k1<47 T/m and outer bend gradient  k1<20 T/m
–  Chroma#c sextupole gradient  k2 <7000 T/m^2 and harmonic sextupole gradient   k2 <4000 T/m^2

• Physics constraints
– Maximum beta func#on < 30m

– Equal frac#onal tunes for round beam

– Dispersion in the straight <1mm

QF1 QF2 QF4 QF5 QF6 QF6 QF5 QF4 QF2 QF1QF3 QF3

SF

SD SD

SF

QD1 QD1

SH1 SH2 SH1SH2

B31B1 B2 B3 B3 B3 B3 B3 B2

One sector of 9BA la0ce 

 Magnet Layout and Constraints

 central arc dispersion bump matching straightdispersion bumpmatchingstraight
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The purpose of this step is to narrow down the search283

ranges of the quadrupole gradients, thus excluding pa-284

rameters that lead to non-physical (unstable) solutions285

or violate our linear property targets. Because the non-286

linear properties are not evaluated, this stage is very fast.287

The optimization objectives are the natural emittance288

and beta functions in the straight-section mid-points,289

which are directly related to the brightness of the ma-290

chine, the ultimate goal of this lattice optimization. We291

also set a 150 pm rad upper-limit cut-o↵ for the natu-292

ral emittance and reject lattice solutions with straight293

section beta functions larger than 3m or less than 1 m.294

Horizontal and vertical tunes are forced to be nearly iden-295

tical in anticipation of operation at coupling resonance.296

Instead of letting the optimization run its full course, we297

monitor the evolution of the lattice population and stop298

the run when we determine that the emittance and beta299

functions spread over a su�ciently small, but not too300

narrow range. Then, the last generation is selected as an301

initial population for the next stage: linear and nonlinear302

lattice optimization.303

In this 2nd stage, both linear and nonlinear properties304

of the lattice are optimized simultaneously. The linear305

property objectives are the same as before, except that306

beta functions are no longer optimized but rather con-307

strained. A full list of the applied constraints is given308

in Table I. The nonlinear properties to be optimized are309

TABLE I. Constraints for ALS-U Lattice Optimization.

Natural emittance "0 < 155 pm rad
Maximum beta �x,y < 30m
Maximum dispersion ⌘x < 15 cm
Fractional tunes 0.1 < ⌫x,y < 0.4
Dispersion at center of straight |⌘⇤

x| < 1mm
Beta at center of straight 1m < �⇤

x,y < 5m
Beta in central arc bends (B3) �B3

x,y < 4m
Fractional tune di↵erence |⌫x � ⌫y| < 0.01
Chromatic sextupole strength (SF, SD) b2 < 900m�3

310

311

DA and MA which are related to machine performance312

through injection e�ciency and Touschek lifetime. We313

do not directly optimize the injection e�ciency since its314

evaluation is very time consuming and depends on the315

exact injection method. It also strongly depends on the316

exact longitudinal phase space which in turn can be heav-317

ily a↵ected by harmonic cavities; at such an early stage318

in the design process we prefer not to make assumptions319

about such systems yet. In practice, DA can be evalu-320

ated either by 6D tracking to estimate DA area or by 4D321

tracking using frequency map techniques to estimate the322

total di↵usion rate [14–16]. The latter method is used323

in our optimization since it has been observed to render324

superior lattice performance3. The evaluation of Tou-325

3
A smaller but contiguous area of low di↵usion is preferred over

a larger DA that contains many areas of elevated di↵usion (indi-

cating onset of chaotic motion) [14–16].

schek lifetime requires MA evaluations along the machine326

which is extremely time consuming. Instead, averaged327

MA at select points along one sector is used as a proxy328

for Touschek lifetime. In this 2nd optimization stage the329

tuning knobs consist of all 9 quadrupole gradients plus 2330

harmonic sextupole strengths. The chromatic sextupoles331

are tuned by fitting chromaticity to +1 in both planes332

during the optimization. The same constraints as used333

in the linear lattice optimization are again applied here334

in the 2nd stage.335

Both MA and DA are evaluated by including random336

linear gradient and skew errors in the lattices that simu-337

late typical residual beta beating (2-3%) and linear cou-338

pling (about 1%), as they are commonly determined in339

real machines after carrying out lattice calibration and340

correction using orbit-response matrix analysis. Specif-341

ically, the relative normal gradient errors with a sigma342

of 2 ⇥ 10�4 and skew gradient error of 5 ⇥ 10�4 are ap-343

plied to all quadrupoles and combined-function dipoles.344

A Gaussian distribution with 2-sigma truncation is ap-345

plied when the gradient and skew errors are populated.346

These error distributions are retained for the entire op-347

timization stage and only upon its completion, with a348

candidate lattice in hand, alternate error distributions349

are applied and it is verified that these alternate errors350

in the chosen candidate still render comparable perfor-351

mance to the originally optimized lattice.352

The initial population for this 2nd stage optimization353

is taken from the final generation of the previous linear354

optimization stage along with random sextupole gradi-355

ents initially supplied to the first generation. The behav-356

ior and convergence of MOGA can be greatly a↵ected by357

the hyperparameters of the algorithm such as probabil-358

ities and index of mutation and crossover, which deter-359

mine how much the parent and child generations di↵er360

from each other and how frequent they should be mutated361

and crossed over. We found that, for best results, di↵er-362

ent tuning of these hyperparameters are more appropri-363

ate at di↵erent stages of the lattice population evolution.364

Therefore, the optimizations are broken down into sev-365

eral independent runs, where the population generated366

at the end of one run is used as the initial population367

for the next, and the hyperparameters are re-tuned after368

each run. In the earlier runs we set higher mutation and369

crossover probabilities in order to encourage the explo-370

ration over wider ranges; later on, lower probabilities are371

e↵ective to boost convergence speed. Each run typically372

spawns 200 generations. With a typical population size373

of 5000, it usually takes about 2–3 days to complete a374

single run with 1000 computing cores on the ALSACC375

cluster, which is hosted by the LBNL Supercluster and376

has a mixture of di↵erent CPU architectures and mem-377

ory configurations [17]. Usually, several runs are required378

to achieve a fully converged Pareto front. Therefore, this379

whole optimization process for the 2nd stage typically380

takes about a week or two.381

A typical Pareto front resulting from this 2nd stage382

of lattice optimization is shown in Fig. 2. It indicates a383384
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Round beam with bunch lengthening

La#ce proper es (v20r)

Courtesy:	Changchun	Sun



• ALS-U storage ring calls for challenging 9BA lattice to 
achieve ≈75 pm rad (round beam) @ 2 GeV in <200 m 
➔ dense, strong focusing, very strained optics 

• Initial optimization: 9 quadrupoles, 4 sextupoles ➔ 11 
free knobs (later: include reverse bending & superbends) 

• Roughly a dozen magnet/lattice constraints on top 
of pre-determined quadrupole ranges 

• Objectives: ε0, MA, and on-momentum DA (modeled 
as integrated diffusion rate) 

• Ultimately, a highly staged MOGA approach resulted in 
• ±1 mm DA (compatible with on-axis swap-out & AR) 
• ≈1 hr overall lifetime (including x4 boost from 3HCs) 

• …but required months of CPU time on large clusters

ALS-U Optimization as a Test Case for ML
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• Training data for 11D problem cannot be acquired 
through systematic sampling of input space 

• Instead: use first few generations of conventional 
MOGA as training data for DNNs 

• Two 8-layer DNNs used in MOGA instead of calls to 
Tracy for DA and MA (via many-turn tracking) 

• Traditional MOGA requires about 640 gen (5000 
children/gen) ➔ ≈8 days on 1000-core cluster 

• Training 2 DNNs to get DA/MA predictions ≈1% 
rms requires data from about 10 gen 

• Training DNNs takes just ≈30 min on desktop CPU 
• DNN provides quasi-instantaneous lookup (16 ms) 

vs. conventional DA/MA tracking (88 sec)

ML for Full Linear & Nonlinear ALS-U Optimization
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• Initial ML predictions are not 100% accurate (training based on early data) 
• First ML-MOGA solutions show disagreement compared to tracking 

validation ➔ but can retrain DNNs with data from validation step 
• Iterate cycles of validation–retraining–ML-MOGA using model-

independent distance metrics to determine convergence 
➡ ML-MOGA very quickly converges (6-8 iterations) towards true Pareto-

optimal front ➔ overall speedup ≈ 40× (incl. training effort) 
• Once fully converged, ML-MOGA inputs & objectives match those 

of traditional MOGA to within “noise floor” 
• Flexible: can be adapted to other lattice optimization problems as 

long as can provide reasonably accurate DNNs 
• Potential to fully automate entire optimization campaign & optimize 

in parallel from the start for many error lattices is highly attractive ➔ 
derive truly global optimum

Results: ML-MOGA Successful & 40× Faster
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• ML applied to accelerators shows tremendous potential to enable 
• new more aggressive designs, but also  
• exploit full performance of existing & soon to be commissioned rings 

➡ These are highly relevant issues in both present (ALS) & future 4th-gen. storage rings (ALS-U) 

• ATAP & LBL can foster great collaboration on ML for accelerators 
• CRD (the experts on ML) ← Daniela Ushizima 
• AMP (in-house experts on modeling) ← Rémi Lehe (ATAP POC), Gregg Penn, Axel Huebl, Chad Mitchell, Ji Qiang 
➡ https://atap.lbl.gov/machine-learning-artificial-intelligence-and-particle-accelerators/ 
• BACI (eg. virtual diagnostics & adaptive control) ← Daniele Filippetto, Dan Wang, Du Qiang 
• Magnets & ENG (eg. magnetic field mapping & fiducialization, diagnostics, image analysis) ← Laura Garcia 

Fajardo, Maxim Martchevsky, Al Baskys 
• IBT (accelerator optimization using ML) ← Qing Ji, Arun Persaud 
• ALS & CAMERA (beamline instrumentation ➔ “Digital Twin”) ← Antoine Wojdyla, Alex Hexemer  

➡ https://ml4sci.lbl.gov/projects

Outlook & Opportunities for Collaboration
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Thank You 

Questions?
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