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What’s the Storage Ring El

*Per’s presentation raised an interesting question: how can

you accurately determine the storage ring energy?
— “accurate”, i.e. better than dipole field measurement data (~10-3)

*Resonant spin depolarization delivers such a calibration
— expect accuracy on a ~ 10° — 10 level

Why would we need that kind of energy resolution?

— Frequency feedbacks usually part of (or interleaved with) OFB
— Undulator spectra can be fitted to reveal energy

— Soin the end... who cares at all?
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*OK, but what about momentum compaction?
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*Calibrated machine model = “I’art pour I’art”?

*OK, but what about momentum compaction?

— Control of momentum compaction, particularly nonlinear momentum
compaction, is crucial to reach very short bunches (THz, ...)
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— In order to control it, we need to measure it first

— Determining momentum compaction requires measuring an energy shift as
a function of RF detuning
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At MAX-lab we usually don’t care too much for short
bunches in storage rings, but...
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Why Resonant Spin Depol '

At MAX-lab we usually don’t care too much for short
bunches in storage rings, but...

*When do you ever get a chance to see the quantum nature
of anything?
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Figure 2: Polarization build-up and fit (flat orbit and verti-
cal BBA). The fit parameter for the characteristic build-up
time is (1837 £ 1) s corresponding to an equilibrium polar-
1zation of 91%. SLS, 2001
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*If we kick the spins into the machine plane
in resonance with this precession, the
beam will depolarize
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RSD in a Nutshell

*Electrons in a storage ring gradually polarize along the
guiding dipole field, i.e. their spins tend to align
antiparallel to the bending magnet field

*In general, spin vectors precess around this axis with a
frequency directly proportional to the electron energy

AQ

*If we kick the spins into the machine plane
in resonance with this precession, the C
beam will depolarize

*Detect depolarizing frequency - beam energy Bl i}
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Spin Dynamics in Electron

*Ternov, Loskutov and Korovina,1961: spin-flip radiation
— While being radially accelerated electrons emit photons which carry a spin
— After emitting a photon, electron’s spin can flip (only 10-"" of emitted power!)
— Nevertheless, there are two unequal spin flip rates

5vV3 e2~2h 8
Wiy = v 5035 (1+—)
16 m2c?p 5v/3
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Wiy = V3 L (1_—)
16 m2c?p 5v/3

— This inequality breaks the symmetry leading to a net build-up of polarization
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Wiy = v 5035 (1+—)
16 m2c?p 5v/3
5vV3 e2~2h 8
Wiy = V3 L (1_—)
16 m2c?p 5v/3

— This inequality breaks the symmetry leading to a net build-up of polarization

*Sokolov-Ternov polarization level
Wy Wy 8

Parp — _
W +W o 53

= 92.38%
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Spin Dynamics in Electron®

*Sokolov-Ternov polarization level
Wy =Wy 8
Wi +Wyp o 5v3

Pgr = 92.38%

*With a characteristic build-up time

~1
1 5v/3 e2h 03
= (Wi + Wiy) —(8 oyl B

75
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Spin Dynamics in Electron

*Sokolov-Ternov polarization level
Wy =Wy 8
Wi +Wyp o 5v3

Pst = 92.38%

*With a characteristic build-up time

—1
1 5v/3 €e2h ,03
Tp = (WTl + WlT) — ( ) m2c2 75

*So the polarization level in the ring can be expressed as

P(t) = Pt (1 _ e—t/Tp)
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Spin Dynamics in Electron

*Sokolov-Ternov polarization level
_ Wy Wy 8

_ — — 92.38%
Wi +Wyp o 5v3 O

Pst

*With a characteristic build-up time

1
_ 5v/3 €e2h ,03
Tp = (Wi + W) 1—( )

8 m2c? ~5
*So the polarization level in the ring can be expressed as
P(t) = Psr (1 _ e—t/Tp)

*But in a real storage ring things are a bit more
complicated... (as always)
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Spin Dynamics in Electron

*Electron’s spin interacts with magnetic fields via the
magnetic moment associated with the spin, i.e.

— where g is the anomalous magnetic moment of the electron

—9
a= gT = 0.00115965218073(28)
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Spin Dynamics in Electron

*Electron’s spin interacts with magnetic fields via the
magnetic moment associated with the spin, i.e.

— where g is the anomalous magnetic moment of the electron

—9
a= gT = 0.00115965218073(28)

*In a storage ring the electron spins precess

around the guiding dipole field

s < =
2 _Gx8S
dt 8

— with the angular velocity (Thomas precession)

G=—-25

2mecC
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Spin Dynamics in Electron M

* Relativistic electrons in lab frame
- 1

- L e l 5 ay 3 A LRV -
Qrap = — [<a+’)/)B fy—|—1ﬂ<ﬂ B) (CL+7+1)5XE]

Bargman, Michel, Telegdy, 1959: Thomas-BMT equation

dg_ e

—

(1+a)B) +(1+ay)B1| x 3

ds MeCY

*So in reality, need to perform spin tracking
along closed orbit

MAX-/ab Simon C. Leemann

‘.O Accelerator Physics Meeting, September 21, 2012



Spin Dynamics in Electron M

* Relativistic electrons in lab frame
- 1

- L e l 5 ay 3 A LRV -
Qrap = — [<a+’)/)B fy—|—1ﬂ<ﬂ B) (CL+7+1)5XE]

Bargman, Michel, Telegdy, 1959: Thomas-BMT equation

dg_ e

—

(1+a)B) +(1+ay)B1| x 3

ds MeCY

*So in reality, need to perform spin tracking
along closed orbit

*But ideal ring has only B, 5

= GBJ_
sp — ary
MeCy
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Spin Dynamics in Electron :

*In the experiment: excellent machine alignment &
accurate (vertical) BPM calibration = minimize

horizontal field components = high degree of
polarization
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Spin Dynamics in Electron®

*In the experiment: excellent machine alignment &
accurate (vertical) BPM calibration = minimize

horizontal field components = high degree of
polarization

*Spin precession is proportional to revolution frequency

Q» o €BJ_ o GBJ_
sp — ary Wo —
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Spin Dynamics in Electron®

*In the experiment: excellent machine alignment &
accurate (vertical) BPM calibration = minimize

horizontal field components = high degree of
polarization

*Spin precession is proportional to revolution frequency

Q» o €BJ_ o GBJ_
sp — ary Wwo =
mecCy mecC?y

*So we can define a spin tune
Qs

wo
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Spin Dynamics in Electron®

*In the experiment: excellent machine alignment &
accurate (vertical) BPM calibration = minimize

horizontal field components = high degree of
polarization

*Spin precession is proportional to revolution frequency

Q» o €BJ_ o GBJ_
sp — ary Wo —
mecCy mecC?y

*So we can define a spin tune
Qs

wo

:]/S:afy

*If we measure this spin tune, we know the energy
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Spin Dynamics in Electron

*But how do we measure the spin precession frequency?
— kick spins into machine plane
— if this is done in resonance with precession, polarization will collapse
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Spin Dynamics in Electron

*But how do we measure the spin precession frequency?
— kick spins into machine plane
— if this is done in resonance with precession, polarization will collapse
— polarization collapse measured via Touschek scattering

*Touschek scattering = Moller scattering cross-section

Moéller: o ﬁ‘f T, o7 = (aC (&) + P*{aF(£))

doss — 4r? [ 4 3—|—P2] 1
—_—
— if polarization collapses, Touschek scattering cross-section increases

— Touschek lifetime drops
— Touschek losses increase (Touschek losses come in pairs!)
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Example: RSD Measureme

Campaign carried out at SLS, 2001-2002

 Goals:

— calibrate energy with better accuracy than previous Hall probe
measurements of dipoles

— verify if SLS energy was actually 1% too high (as indicated by beam-based
quadrupole and sextupole adjustments during commissioning)

— measure nonlinear momentum compaction and compare to model values
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Example: RSD Measureme ' m

- Step #1: Verify Touschek-dominated beam
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- Step #1: Verify Touschek-dominated beam
- Step #2: Verify high degree of stored beam polarization
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Example: RSD Measureme

- Step #1: Verify Touschek-dominated beam
- Step #2: Verify high degree of stored beam polarlzatlon

Theory for (perfect) SLS:
Tp, = 1873s

From fit to measured It data:

— (1837 £ 1) s

Actual polarization level:

Py = Pop-2 — 91%
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Example: RSD Measuremel

- Step #1: Verify Touschek-dominated beam
- Step #2: Verify high degree of stored beam polarization

*Step #3: Find the depolarizing resonance
— Feed sinusoidal excitation to vertical kicker magnet

— Sweep excitation frequency over interval around expected depolarizing
resonance

— Record /xt and loss monitor coincidence signal
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Example: RSD Measureme

- Step #1: Verify Touschek-dominated beam
- Step #2: Verify high degree of stored beam polarization

*Step #3: Find the depolarizing resonance
— Feed sinusoidal excitation to vertical kicker magnet

— Sweep excitation frequency over interval around expected depolarizing
resonance

— Record /xt and loss monitor coincidence signal

-Step #4: Calibrate storage ring energy

— Map excitation frequency to storage ring energy P — v, =ary
. . . wo
— Froisart-Stora fit for resonance crossing = E, AE
MA,\’./.ab Simon C. Leemann
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Example: RSD Measureme

*Step #1:

Verify Touschek-dominated beam
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Example: RSD Measureme

- Step #1: Verify Touschek-dominated beam
- Step #2: Verify high degree of stored beam polarization

*Step #3: Find the depolarizing resonance
— Feed sinusoidal excitation to vertical kicker magnet

— Sweep excitation frequency over interval around expected depolarizing
resonance

— Record /xt and loss monitor coincidence signal

-Step #4: Calibrate storage ring energy

— Map excitation frequency to storage ring energy Lp _ Vs = ary
w
— Froisart-Stora fit for resonance crossing = E, AE °
*Step #5: Worry about subtleties
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Example: RSD Measureme

- Step #1: Verify Touschek-dominated beam
- Step #2: Verify high degree of stored beam polarization

*Step #3: Find the depolarizing resonance
— Feed sinusoidal excitation to vertical kicker magnet

— Sweep excitation frequency over interval around expected depolarizing
resonance

— Record /xt and loss monitor coincidence signal

-Step #4: Calibrate storage ring energy

— Map excitation frequency to storage ring energy Lp _ Vs = ary
w
— Froisart-Stora fit for resonance crossing = E, AE °
*Step #5: Worry about subtleties
— synchrotron sidebands
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Example: RSD Measuremei

- Step #1: Verlfy Touschek-dominated beam
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Example: RSD Measureme

- Step #1: Verify Touschek-dominated beam
- Step #2: Verify high degree of stored beam polarization

*Step #3: Find the depolarizing resonance
— Feed sinusoidal excitation to vertical kicker magnet

— Sweep excitation frequency over interval around expected depolarizing
resonance

— Record /xt and loss monitor coincidence signal

-Step #4: Calibrate storage ring energy

— Map excitation frequency to storage ring energy P — v, =ary

— Froisart-Stora fit for resonance crossing = E, AE

*Step #5: Worry about subtleties

— synchrotron sidebands, mirror resonances (Nyquist!), ...
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Example: RSD Measureme m

- Step #1: Verify Touschek-dominated beam
- Step #2: Verify high degree of stored beam polarization
*Step #3: Flnd the depolarlzmg resonance

SLS E=24 GeV Wrep = 1042 kHz
— vgp = 5.4465 corresponding to wy.cs—depor = 465/577 kHz

465kHz, ,577kHz
o ¢
] | | |
| H | H H |
4(0 rev 5(1) rev 7 (D rev

*Step #5: Worry about subtleties

— synchrotron sidebands, mirror resonances (Nyquist!), ...
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Example: RSD Measureme '

*Finally: 10-° accuracy of energy calibration allows
investigation of nonlinearity of momentum compaction
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Example: RSD Measure

:_: APE - Alpha and Precise Energy Calibration Measurement by Resonant Spin Depolanzation
File DAQ
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Example: RSD Measuremei

*Finally: 10-° accuracy of energy calibration allows
investigation of nonlinearity of momentum compaction

*This method (originally used in high-energy lepton rings)
has by now been successfully applied at several light

sources

— BESSY I

— ALS

— SLS

— ANKA

— DIAMOND

— Australian Synchrotron

— ...and most recently at SOLEIL
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